Startseite The crystal structure of calcitriol–chloroform (1/1), C27H44O3⋅CHCl3
Artikel Open Access

The crystal structure of calcitriol–chloroform (1/1), C27H44O3⋅CHCl3

  • Yue-Ting Deng , Zhong-Yan Hao , Xi Liu , Kang Pan , An Zhao , Wen-Yang Zheng , Wei Xiang und Wen-Jing Ma ORCID logo EMAIL logo
Veröffentlicht/Copyright: 24. Januar 2025

Abstract

C27H44O3⋅CHCl3, monoclinic, P21 (no. 4), a = 11.2800(7) Å, b = 8.4193(4) Å, c = 16.6951(10) Å, β = 109.593(4)°, V = 1493.72(15) Å3, Z = 2, R gt (F) = 0.0561, wRref(F2) = 0.1550, T = 299 K.

CCDC no.: 2408151

Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal: Colourless needle
Size: 0.30 × 0.05 × 0.05 mm
Wavelength: Cu Kα radiation (1.54178 Å)
μ: 2.97 mm−1
Diffractometer, scan mode: Bruker D8 Venture,
θmax, completeness: 72.0°, 99 %
N(hkl)measured, N(hkl)unique, Rint: 8915, 4702, 0.060
Criterion for Iobs, N(hkl)gt: Iobs > 2 σ(Iobs), 3,710
N(param)refined: 314
Programs: Olex2, 1 , 2 Shelx 3 , 4
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

Atom x y z Uiso*/Ueq
C1 0.4471 (5) 1.1025 (6) 0.1969 (3) 0.0471 (10)
H1A 0.362120 1.097897 0.198609 0.057*
H1B 0.483025 1.203651 0.220819 0.057*
C2 0.4411 (4) 1.0959 (5) 0.1047 (3) 0.0447 (10)
H2A 0.375206 1.168479 0.071154 0.054*
C3 0.4110 (4) 0.9285 (5) 0.0686 (3) 0.0452 (10)
H3A 0.327516 0.898464 0.067696 0.054*
H3B 0.411294 0.926785 0.010553 0.054*
C4 0.5059 (4) 0.8105 (5) 0.1213 (3) 0.0398 (9)
H4 0.589811 0.842541 0.122011 0.048*
C5 0.5045 (4) 0.8109 (5) 0.2122 (3) 0.0403 (9)
C6 0.4822 (5) 0.6830 (6) 0.2499 (3) 0.0557 (12)
H6A 0.478031 0.689800 0.304451 0.067*
H6B 0.470665 0.585701 0.221965 0.067*
C7 0.5239 (4) 0.9699 (5) 0.2522 (3) 0.0402 (9)
C8 0.5976 (4) 0.9977 (5) 0.3324 (3) 0.0439 (10)
H8 0.594920 1.098486 0.354457 0.053*
C9 0.6824 (4) 0.8805 (5) 0.3880 (3) 0.0427 (9)
H9 0.704722 0.795020 0.360777 0.051*
C10 0.7318 (4) 0.8811 (5) 0.4733 (3) 0.0421 (9)
C11 0.6969 (6) 0.9965 (7) 0.5305 (3) 0.0641 (15)
H11A 0.629081 1.064564 0.496805 0.077*
H11B 0.768671 1.063127 0.559408 0.077*
C12 0.6551 (7) 0.9066 (9) 0.5962 (4) 0.085 (2)
H12A 0.575184 0.855135 0.567467 0.102*
H12B 0.642160 0.982165 0.636377 0.102*
C13 0.7504 (6) 0.7809 (8) 0.6453 (3) 0.0695 (17)
H13A 0.716127 0.723827 0.683087 0.083*
H13B 0.826975 0.833300 0.679934 0.083*
C14 0.7822 (4) 0.6612 (6) 0.5853 (3) 0.0430 (9)
C15 0.8269 (4) 0.7626 (5) 0.5231 (3) 0.0399 (9)
H15 0.898393 0.824938 0.558854 0.048*
C16 0.8817 (5) 0.6415 (6) 0.4786 (3) 0.0526 (11)
H16A 0.941219 0.690416 0.455564 0.063*
H16B 0.816157 0.589542 0.432960 0.063*
C17 0.9479 (5) 0.5233 (6) 0.5499 (3) 0.0550 (12)
H17A 1.038448 0.536654 0.567325 0.066*
H17B 0.927390 0.415123 0.530199 0.066*
C18 0.9007 (4) 0.5585 (5) 0.6259 (3) 0.0407 (9)
H18 0.963654 0.627834 0.665044 0.049*
C19 0.6675 (5) 0.5620 (7) 0.5368 (4) 0.0657 (15)
H19A 0.606696 0.628182 0.496663 0.099*
H19B 0.630926 0.517616 0.576115 0.099*
H19C 0.692599 0.477852 0.507178 0.099*
C20 0.8964 (4) 0.4061 (6) 0.6753 (3) 0.0488 (10)
H20 0.846781 0.326985 0.634800 0.059*
C21 0.8356 (7) 0.4304 (10) 0.7439 (5) 0.093 (2)
H21A 0.872282 0.521430 0.777776 0.140*
H21B 0.849562 0.337971 0.779594 0.140*
H21C 0.746762 0.446931 0.717364 0.140*
C22 1.0305 (4) 0.3406 (6) 0.7159 (3) 0.0498 (11)
H22A 1.076394 0.360212 0.677094 0.060*
H22B 1.071631 0.400788 0.767300 0.060*
C23 1.0421 (4) 0.1651 (6) 0.7386 (3) 0.0531 (11)
H23A 1.008352 0.102283 0.687288 0.064*
H23B 0.993397 0.141843 0.775321 0.064*
C24 1.1795 (4) 0.1201 (5) 0.7838 (3) 0.0473 (10)
H24A 1.206580 0.169237 0.839623 0.057*
H24B 1.229318 0.166321 0.752356 0.057*
C25 1.2110 (4) −0.0582 (6) 0.7955 (3) 0.0461 (10)
C26 1.1974 (5) −0.1386 (7) 0.7122 (3) 0.0670 (15)
H26A 1.255519 −0.092268 0.688055 0.100*
H26B 1.113047 −0.124708 0.673817 0.100*
H26C 1.215073 −0.249838 0.721788 0.100*
C27 1.1374 (6) −0.1413 (8) 0.8432 (4) 0.0746 (17)
H27A 1.170275 −0.246388 0.858184 0.112*
H27B 1.050563 −0.147772 0.807876 0.112*
H27C 1.144111 −0.082753 0.893851 0.112*
C28 0.1934 (6) 0.5329 (8) 0.0538 (4) 0.0672 (14)
H28 0.270960 0.595960 0.071182 0.081*
Cl1 0.19780 (17) 0.4073 (2) 0.13833 (11) 0.0921 (6)
Cl2 0.0682 (2) 0.6623 (3) 0.03235 (17) 0.1267 (9)
Cl3 0.1892 (2) 0.4234 (3) −0.03531 (12) 0.1017 (6)
O1 0.5600 (3) 1.1472 (4) 0.0998 (2) 0.0523 (8)
H1 0.557374 1.145126 0.050098 0.078*
O2 0.4767 (3) 0.6583 (4) 0.08060 (19) 0.0489 (7)
H2 0.532440 0.594818 0.104625 0.073*
O3 1.3434 (3) −0.0602 (4) 0.8467 (2) 0.0523 (8)
H3 1.368601 −0.152215 0.853640 0.078*

1 Source of materials

In representative experiments, the calcitriol (also known as (5Z,7E)-(1S,3R)-9,10-Secocholesta-5,7,10(19)-trien-1,3,25-triol) was presented by Gansu Haotian Technology Co., Ltd. with no further purification. The calcitriol (30 mg) was dissolved in chloroform (20 ml). The transparent solution was purified through PTFE syringe covered with membrane and punctured at room temperature. After a period of seven days, colorless needle crystals of the title compound were obtained.

2 Experimental details

Single-crystal diffraction data were collected on a Bruker D8 Venture equipped with a mirror monochromatic CuKα X-ray source (λ = 1.54178 Å) at 299 K. The crystal structures were solved by using Olex2. 1 , 2 The model was solved with the Shelxt 3 structure solution program and further refined with the Shelxl 4 refinement package. Hydrogen atoms attached to carbon were positioned in their ideal geometric locations. The hydrogen atoms bound to carbon were geometrically placed, with the hydrogen atoms treated as though they were riding on their parent atoms in idealized positions.

3 Comment

As the active form of vitamin D3 in vivo, calcitriol plays an important role in the regulation of calcium and phosphorus. 5 , 6 It is also active in many other biological processes, such as the induction of cell differentiation and apoptosis, as well as the inhibition of cell proliferation and angiogenesis. 7 In addition, calcitriol has been shown to be effective in managing conditions such as osteoporosis, glucocorticoid-induced osteoporosis, secondary hyperparathyroidism, and psoriasis. 8 Despite its proven effectiveness, calcitriol has limited pharmaceutical applications due to its very low solubility in water and its high sensitivity to light, heat, and oxygen, 9 which presents a major challenge in developing it into a stable and therapeutically effective dosage form. The formation of chloroform solvates of calcitriol may offer a novel approach for addressing its formulation challenges.

Each asymmetric unit contains one calcitriol and one chloroform molecule. The three-dimensional structure of calcitriol resembles the waves of the ocean, with chloroform molecules embedded within like navigational buoys. It indicates that two types of hydrogen bonds play an important role in maintaining the crystal structure, including O1–H1…O2 (1 − x − 1, 1/2 + y, −z) [length 2.901 (4) Å, angle 171°], O2–H2…O3 (2 − x − 1, 1/2 + y, 1 − z) [length 2.706 (5) Å, angle 176°], O3–H3…O1 (2 − x − 1, −2/3 + y, 1 − z) [length 2.721 (5) Å, angle 165°]. The adjacent hydrogen bonds form a 12-membered ring, which plays a crucial role in maintaining the three-dimensional structure. There are no specific interactions formed by the Cl atoms.


Corresponding author: Wen-Jing Ma, School of Materials Science and Chemical Engineering, Chuzhou University, Chuzhou, Anhui, 239000 P.R. China, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Conflict of interest: The authors declare no conflicts of interest regarding this article.

  3. Research funding: Gansu Longyuan Youth Innovation and Entrepreneurship Talent Project (No. 2023LQTD32).

References

1. Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. Olex2: A Complete Structure Solution, Refinement and Analysis Program. J. Appl. Crystallogr. 2009, 42, 339–341; https://doi.org/10.1107/s0021889808042726.Suche in Google Scholar

2. Bourhis, L. J.; Dolomanov, O. V.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. The Anatomy of a Comprehensive Constrained, Restrained Refinement Program for the Modern Computing Environment – Olex2 Dissected. Acta Cryst. 2015, A71, 59–75; https://doi.org/10.1107/s2053273314022207.Suche in Google Scholar

3. Sheldrick, G. M. Crystal Structure Refinement with Shelxl. Acta Crystallogr. 2015, C71, 3–8; https://doi.org/10.1107/s2053229614024218.Suche in Google Scholar

4. Sheldrick, G. M. A Short History of Shelx. Acta Crystallogr. 2008, A64, 112–122; https://doi.org/10.1107/s0108767307043930.Suche in Google Scholar

5. Bikle, D. Nonclassic Actions of Vitamin D. J. Clin. Endocrinol. Metab. 2009, 94, 26–34; https://doi.org/10.1210/jc.2008-1454.Suche in Google Scholar PubMed PubMed Central

6. Heberden, C.; Denis, I.; Pointillart, A.; Mercier, T. TGF-Β and Calcitriol. Gen. Pharmacol. Vasc. Syst. 1998, 30, 145–151; https://doi.org/10.1016/s0306-3623(97)00271-1.Suche in Google Scholar PubMed

7. Kulesza, U.; Plum, L. A.; DeLuca, H. F.; Mouriño, A.; Sicinski, R. R. Novel 9-Alkyl- and 9-Alkylidene-Substituted 1α,25-Dihydroxyvitamin D3 Analogues: Synthesis and Biological Examinations. J. Med. Chem. 2015, 58, 6237–6247; https://doi.org/10.1021/acs.jmedchem.5b00795.Suche in Google Scholar PubMed

8. Gul, F. H.; Bozkurt, N. M.; Nogay, N. H.; Unal, G. The Neuroprotective Effect of 1, 25-dyhydroxyvitamin D3 (Calcitriol) and Probiotics on the Rotenone-Induced Neurotoxicity Model in SH–Sy5y Cells. Drug Chem. Toxicol. 2024, 1–12; https://doi.org/10.1080/01480545.2024.2429621.Suche in Google Scholar PubMed

9. Yuan, T.; Qin, L. Z.; Wang, Z. H.; Nie, J. Y.; Guo, Z. F.; Li, G.; Wu, C. B. Solid Lipid Dispersion of Calcitriol with Enhanced Dissolution and Stability. Asian J. Pharmaceut. Sci. 2013, 8, 39–47; https://doi.org/10.1016/j.ajps.2013.07.005.Suche in Google Scholar

Received: 2024-12-11
Accepted: 2025-01-14
Published Online: 2025-01-24
Published in Print: 2025-04-28

© 2025 the author(s), published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Artikel in diesem Heft

  1. Frontmatter
  2. New Crystal Structures
  3. The crystal structure of N-(3-bromo-4-fluorophenyl)-N′-hydroxy-4-{[2-(4-methylphenyl)ethyl]amino}-1,2,5-oxadiazole-3-carboximidamide, C18H17BrFN5O2
  4. Synthesis and crystal structure of ethyl (2S,4aS,6aS,6bR,8aR,12aS,12bR,14bR,E)-10-(((3,4-dichlorobenzyl)oxy)imino)-2,4a,6a,6b,9,9,12a-heptamethyl-13-oxo-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,12b,13,14b-icosahydropicene-2-carboxylate
  5. The crystal structure of pyrazole nitrate
  6. Crystal structure of tetramethyl-bis(μ2-2-(2-hydroxy-3-methoxybenzylidene)-1-(6-(2-(2-hydroxy-3-methoxybenzylidene)hydrazine-1-carbonyl)picolinoyl)hydrazin-1-ido-κ4O,N,O′:O′)ditin(II) ─ ethanol (1/2), C54H62N10O14Sn2
  7. Crystal structure of catena-poly[μ3-iodido-(4-bromopyridine-κ1N)copper(I)], C5H4BrNCuI
  8. The crystal structure of cyclopentadienyl Co–P–C complexes by benzylideneacetone addition, C38H38CoO2P
  9. Synthesis and crystal structure of-(3S,10S,13S,17S)-N-(2-methoxyphenyl)-10,13-dimethyl-17-((R)-1-(phenylamino)ethyl)hexadecahydro-1H-cyclopenta[α]phenanthren-3-amine, C34H48N2O
  10. The crystal structure of (E)-3-((E)-3-(4-ethoxy-3-methoxyphenyl)-1-hydroxyallylidene) chroman-2,4-dione, C21H18O6
  11. The crystal structure of trans–L/D-[bis-(2-methyl-8-hydroxyquinoline-κ2 N,O) bis-(1,3,5-triaza-7-phosphaadamantane-κ2 P)cobalt(III)] tetrafluoroborate
  12. Crystal structure of 9-chloro-2,3,4,4a,5,6-hexahydro-1H-pyrido [1′,2′:1,6]pyrazino[2,3-b]quinoxaline, C14H15ClN4
  13. Crystal structure of 7-(diethylamino)-3-(benzoyl)-2 H -chromen-2-one, C20H19NO3
  14. The crystal structure of 4–bromo-3,5-dinitropyrazole
  15. Crystal structure of 8-hydroxy-3,5,8a-trimethyl-7,8,8a,9-tetrahydronaphtho[2,3-b]furan-4,6-dione, C15H16O4
  16. Crystal structure of 5-hydroxy-3,5,8a-trimethyl-4a,5,6,7,8a,9-hexahydronaphtho[2,3-b]furan-4,8-dione, C15H18O4
  17. Synthesis and crystal structure of-(3S,10S,13S,17S)-N-(2-methoxyphenyl)-10,13-dimethyl-17-((R)-1-(p-tolylamino)ethyl)hexadecahydro-1H-cyclopenta[α]phenanthren-3-amine, C35H50N2O
  18. The crystal structure of catena-poly((μ2-1,3,5-tri(1H- imidazol-1-yl)benzene κ2N:N′)-bis(4-hydroxbenzoato-κ1O)-zinc(II) monohydrate), C29H24N6O7Zn
  19. Crystal structure of 2-(benzo[d]oxazol-2-yl)acetonitrile, C9H6N2O
  20. Crystal structure of 1,3-dihydroxy-6,8-dimethoxy-2-(6-methyltetrahydro-2Hpyran-2-yl)-4a,9a-dihydroanthracene-9,10-dione, C22H22O7
  21. The crystal structure of the double salt potassium 1-methylpiperazine-1,4-di-ium trinitrate, C5H14KN5O9
  22. Crystal structure of 5′-hydroxy-6′-methoxy-1′-methyl-2′,3′,8′,8a′-tetrahydro-1′H-spiro[cyclohexane-1,7′-cyclopenta[ij]isoquinoline]-2,5-dien-4-one, C18H19NO3
  23. The crystal structure of 1,1′-(2,3,5,6-tetramethylpyrazine-1,4-diyl)bis(ethan-1-one), C12H18N2O2
  24. Crystal structure of [μ2-piperazine-1,4-bis(2-hydroxypropanesulfonato-κ2O:O′)] bis(μ2-4,4′-trimethylenedipyridyl-κ2N:N′)disilver(I), C18H24AgN3O4S
  25. Crystal structure of bis ((1-((E)-((4-methoxyphenyl)imino)methyl)naphthalen-2-yl)oxy) copper(II), C36H28CuN2O4
  26. Synthesis and crystal structure of 6,6′-((1E,11E)-5,8-dioxa-2,11-diazadodeca-1,11-diene-1,12-diyl) bis(2,4-di-tert-butylphenol), C36H56N2O4
  27. The crystal structure of barium hexahydroxidoiridate(IV) dihydroxide, Ba2[Ir(OH)6](OH)2
  28. Crystal structure of cinnamoyl ferrocene, C19H16FeO
  29. Crystal structure of (E)-3-(4-butoxyphenyl)acryloylferrocene, C23H24FeO2
  30. Crystal structure of 7-(dimethylamino)-2-hydroxy-2-(trifluoromethyl)-2H-chromene-3-ethyl carboxylate, C15H16F3NO4
  31. The crystal structure of 1-phenylethan-1-aminium 4-hydroxy-3,5-dimethoxybenzoate C17H21NO5
  32. The crystal structure of 1,3,5-trichloro-2-nitrobenzene
  33. The crystal structure of tris(μ2-bromido)-bis(η6-p-cymene)-diosmium(II) tetrafluoroborate, C20H28BBr3F4Os2
  34. Crystal structure of new barium lithium manganese fluorides: Ba14Li1.87Mn14.13F68 with a Jarlite–related structure
  35. Crystal structure of (4-fluorobenzyl)triphenylphosphonium chloride, C25H21ClFP
  36. The crystal structure of calcitriol–chloroform (1/1), C27H44O3⋅CHCl3
  37. The crystal structure of (E)-1-((3)-nitrophenyl)pyren-3-(pyren-1-yl)prop-2-en-1-one, C25H15NO3
  38. Crystal structure of (E)-2-hydroxy-N′-(1-(4-hydroxyphenyl)propylidene)benzohydrazide, C16H16N2O3
  39. Crystal structure of (E)-(3-(thiophen-2-yl)acryloyl)ferrocene, C17H14FeOS
  40. Crystal structure of (E)-(3-(furan-2-yl)acryloyl)ferrocene, C17H14FeO2
  41. Synthesis and crystal structure poly[diaqua(μ3-3-(((7-hydroxy-3-(4-methoxy-3-sulfonatophenyl)-4-oxo-4H-chromen-8-yl) methyl)ammonio)propanoate-κ3 O:O′:O″) sodium(I)] monohydrate, C20H24NNaO12S
  42. Crystal structure of 9-methoxy-4-(2-methoxypyridin-3-yl)-5,6-dihydrobenzo[h]quinazolin-2-amine C19H18N4O2
  43. Synthesis and crystal structure of 4-(difluoromethyl)-1-methyl-N-(pyridin-3-yl)-1H-pyrazole-3-carboxamide hydrate, C11H12F2N4O2
  44. The crystal structure of caesalfurfuric acid B, C22H32O4
  45. The crystal structure of 2-bromo-2-(5-bromo-2-methyl-4-nitro-1H-imidazol-1-yl)-1-phenylethanone, C12H9Br2N3O3
  46. The crystal structure of bis{chlorido-[μ2-(1-oxidopyridin-2-yl)(pyridin-2-yl)amido-κ3 O,N, N′]copper(II)}, C20H16Cl2Cu2N6O2
  47. The crystal structure of 3-amino-2-formyl-1-phenyl-9,10-dihydrophenanthrene-4-carbonitrile, C22H16N2O
  48. The crystal structure of 1,1′-(2,5-dimethylpyrazine-1,4-diyl)bis(ethan-1-one), C10H14N2O2
  49. Crystal structure of 5′-(9-phenyl-9H-carbazol-3-yl)-[2,2′-bithiophene]-5-carbaldehyde, C27H17NOS2
  50. The crystal structure of the double salt dipyridin-1-ium bromide tribromide
  51. Crystal structure of (E)-(3-(3-methylthiophen-2-yl)acryloyl)ferrocene, C18H16FeOS
  52. Crystal structure of (E)-(3-(4-phenoxyphenyl)acryloyl)ferrocene, C25H20FeO2
  53. Crystal structure of (E)-(3-(3,4-dimethylphenyl)acryloyl)ferrocene, C21H20FeO
  54. Crystal structure of [(1,4,8,11-tetraazacyclotetradecane-κ4N,N′,N′′,N‴)tetracyanidodiplatinum(II)] dimethyl sulfoxide solvate, C18H36N8O2Pt2S2
  55. Crystal structure of (4-ethoxybenzyl)triphenylphosphonium bromide ethanol solvate, C29H32BrO2P
  56. Crystal structure of (1-naphthalen-1-yl-methyl)triphenylphosphonium chloride ethanol solvate, C31H30ClOP
  57. Crystal structure of (1,4,8,11-tetraazacyclotetradecane-κ4N,N,N,N‴)platinum(II) bis[tribromido(dimethyl sulfoxide-κS)platinate(II)], C14H36Br6N4O2Pt3S2
  58. Crystal structure of (2-methylbenzyl)triphenylphosphonium chloride ethanol solvate, C28H30ClOP
  59. Crystal structure of bis(η2, σ1-8-methoxycyclooct-4-enyl)(μ2-1,4,8,11-tetraazacyclotetradecane-κ4 N, N, N, N‴)diplatinum(II) dibromide, C28H54Br2N4O2Pt2
  60. Crystal structure of (1,4,8,11-tetraazacyclotetradecane-κ4N,N,N,N)palladium(II) tetrabromidopalladate(II), C10H24Br4N4Pd2
  61. Crystal structure of (1,4,8,11-tetraazacyclotetradecane-κ4N,N,N,N‴)palladium(II) bis[trichlorido(dimethyl sulfoxide-κS)platinate(II)], C14H36Cl6N4O2PdPt2S2
  62. Crystal structure of (1,4,8,11-tetraazacyclotetradecane-κ4N,N′,N″,N‴)palladium(II) tetraiodidopalladate(II), C10H24I4N4Pd2
Heruntergeladen am 3.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2024-0470/html
Button zum nach oben scrollen