Home The crystal structure of (E)-3-((E)-3-(4-ethoxy-3-methoxyphenyl)-1-hydroxyallylidene) chroman-2,4-dione, C21H18O6
Article Open Access

The crystal structure of (E)-3-((E)-3-(4-ethoxy-3-methoxyphenyl)-1-hydroxyallylidene) chroman-2,4-dione, C21H18O6

  • Suzana C. Janićević ORCID logo , Vidoslav S. Dekić ORCID logo , Biljana R. Dekić ORCID logo , Emilija T. Pecev Marinković ORCID logo , Niko S. Radulović ORCID logo , Milica G. Bogdanović ORCID logo EMAIL logo and Marko V. Rodić ORCID logo
Published/Copyright: December 23, 2024

Abstract

C21H18O6, triclinic, P 1 (no. 2), a = 7.2187(4) Å, b = 9.3833(7) Å, c = 13.6874(13) Å, α = 85.933(7)°, β = 81.991(7)°, γ = 69.983(7)°, V = 862.35(12) Å3, Z = 2, Rgt(F) = 0.0418, wRref(F2) = 0.1233, T = 295(2) K.

CCDC no.: 2406363

The crystal structure of (E)-3-((E)-3-(4-ethoxy-3-methoxyphenyl)-1-hydroxyallylidene) chroman-2,4-dione is presented in the Figure. Table 1 provides the crystallographic data, while Table 2 lists the atoms along with their atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal: Orange prism
Size: 0.47 × 0.15 × 0.05 mm
Wavelength: Cu Kα radiation (1.54184 Å)
μ: 0.86 mm−1
Diffractometer, scan mode: Gemini S (Oxford Diffraction), ω
θmax, completeness: 71.9°, >99 %
N(hkl)measured, N(hkl)unique, Rint: 11,582, 3,313, 0.037
Criterion for Iobs, N(hkl)gt: Iobs > 2σ(Iobs), 2,711
N(param)refined: 250
Programs: CrysAlisPRO, 1 SHELX, 2 , 3 PLATON 4
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

Atom x y z Uiso*/Ueq
O1 0.26373 (18) 0.70819 (13) 0.86845 (8) 0.0602 (3)
O2 0.2553 (2) 0.53547 (13) 0.77192 (9) 0.0678 (3)
O3 0.12419 (17) 1.04453 (12) 0.65729 (8) 0.0557 (3)
O4 0.14091 (17) 0.86308 (12) 0.53843 (8) 0.0548 (3)
H4 0.130 (4) 0.953 (3) 0.583 (2) 0.122 (10)*
O5 0.24167 (19) 0.31571 (11) 0.17054 (8) 0.0582 (3)
O6 0.321 (15) 0.05743 (10) 0.26467 (7) 0.0490 (3)
C2 0.2402 (2) 0.66694 (17) 0.77696 (11) 0.0500 (3)
C3 0.19975 (19) 0.78362 (16) 0.69980 (10) 0.0436 (3)
C4 0.16871 (19) 0.93618 (16) 0.72158 (10) 0.0447 (3)
C4′ 0.1915 (2) 0.97158 (18) 0.81951 (11) 0.0485 (3)
C5 0.1675 (2) 1.1184 (2) 0.84629 (13) 0.0584 (4)
H5 0.132310 1.198722 0.800924 0.070*
C6 0.1960 (3) 1.1437 (2) 0.93970 (14) 0.0675 (5)
H6 0.179293 1.241616 0.957415 0.081*
C7 0.2492 (3) 1.0251 (2) 1.00784 (13) 0.0681 (5)
H7 0.268985 1.043694 1.070749 0.082*
C8 0.2730 (3) 0.8802 (2) 0.98301 (13) 0.0647 (4)
H8 0.308835 0.800238 1.028627 0.078*
C8′ 0.2428 (2) 0.85469 (19) 0.88864 (11) 0.0524 (4)
C9 0.18834 (19) 0.75110 (16) 0.60012 (11) 0.0444 (3)
C10 0.2306 (2) 0.60057 (17) 0.56356 (11) 0.0469 (3)
H10 0.271504 0.516090 0.605324 0.056*
C11 0.2108 (2) 0.58292 (17) 0.46991 (11) 0.0472 (3)
H11 0.169091 0.671376 0.431655 0.057*
C12 0.24665 (19) 0.44193 (16) 0.42081 (11) 0.0443 (3)
C13 0.2254 (2) 0.44822 (16) 0.32027 (11) 0.0464 (3)
H13 0.190514 0.541941 0.287236 0.056*
C14 0.2546 (2) 0.31961 (16) 0.26875 (10) 0.0434 (3)
C15 0.30254 (19) 0.17798 (15) 0.31929 (10) 0.0421 (3)
C16 0.3243 (2) 0.17098 (16) 0.41879 (11) 0.0474 (3)
H16 0.357210 0.077651 0.452321 0.057*
C17 0.2978 (2) 0.30107 (17) 0.46894 (11) 0.0482 (3)
H17 0.314339 0.293961 0.535489 0.058*
C18 0.2124 (4) 0.4547 (2) 0.11566 (14) 0.0791 (6)
H18A 0.228927 0.435567 0.046462 0.119*
H18B 0.307867 0.499006 0.128861 0.119*
H18C 0.080710 0.523295 0.134654 0.119*
C19 0.3832 (2) −0.09025 (16) 0.31191 (12) 0.0505 (3)
H19A 0.292204 −0.092990 0.370696 0.061*
H19B 0.515258 −0.114294 0.330931 0.061*
C20 0.3828 (3) −0.20250 (17) 0.23895 (13) 0.0587 (4)
H20A 0.250577 −0.179521 0.222362 0.088*
H20B 0.427211 −0.303074 0.267506 0.088*
H20C 0.470343 −0.196606 0.180379 0.088*

1 Source of material

The synthesis was performed in two reaction steps. First, 3-acetyl-4-hydroxycoumarin was obtained through the acetylation of 4-hydroxycoumarin, following a previously published method. 5 The final product was synthesized by condensing 3-acetyl-4-hydroxycoumarin and 4-ethoxy-3-methoxybenzaldehyde. The reaction was conducted in chloroform with a catalytic amount of piperidine. The resulting product was purified using silica gel column chromatography with a hexane/ethyl acetate solvent system (1.5:1, v/v) and dissolved in acetone. Crystals were formed by slow evaporation of the solvent.

2 Experimental details

All hydrogen atoms bonded to carbon were refined in idealized positions using the riding model, with Uiso = nUeq (n = 1.5 for methyl groups and n = 1.2 for other hydrogen atoms) while the hydrogen atom associated with O4 was refined freely.

3 Comment

Naturally and synthetically derived hybrid molecules integrate two or more pharmacophoric units into one molecular scaffold. These structures are promising candidates for developing therapeutic agents due to their ability to exhibit diverse modes of action. 6 Coumarins and chalcones are two important classes of natural products recognized for their wide range of pharmacological activities. 7 , 8 , 9 , 10 , 11 , 12 , 13 These compounds are excellent building blocks for synthesizing the coumarin–chalcone hybrid scaffolds, which may serve as potent bioactive agents. 14 4-Hydroxycoumarin occurs as the structural core of many natural products. At the same time, its chemical properties make it particularly interesting for chemical transformations. 15 The acetylation of 4-hydroxycoumarin produces 3-acetyl-4-hydroxycoumarin, an excellent precursor for synthesizing targeted coumarin–chalcone hybrids via Claisen–Schmidt condensation with aromatic aldehydes. Here, we report the crystal structure of one such compound.

The structure exhibits prototropic tautomerism, where a hydrogen atom migrates from the hydroxyl group O3 to the adjacent keto group O4. Similar behavior has been previously reported in 3-(1-(2-(4-hydroxy-3,5-dimethoxybenzylidene)hydrazinyl)ethylidene)chroman-2,4-dione dihydrate, 16 3-(1-(2-((5-methylthiophen-2-yl)methylene)hydrazinyl)ethylidene)chroman-2,4-dione, 17 and (Z)-3-(1-(2-((E)-4-isopropylbenzylidene)hydrazinyl)ethylidene) chroman-2,4-dione, 18 where the hydrogen atom migrates from the hydroxyl group to a neighboring nitrogen atom.

The electron delocalization is evident in the O3–C4–C3–C9–O4 fragment, a feature characteristic of keto-enol tautomerism, where two oxygen atoms are bridged by resonance-assisted hydrogen bond. The formally double C4–O3 bond and formally single C9–O4 bond exhibit comparable lengths (1.2804(18) and 1.2817(18) Å, respectively), which are longer than typical C=O double bonds in cyclohexanones (1.211 Å), and shorter than C–OH single bonds in enols (1.333 Å). 19 Furthermore, the C3–C4 bond (1.418(2) Å) is shorter than typical Csp2–Csp2 single bonds (1.465 Å), while the C3–C9 bond (1.4383(19) Å) is longer than the expected Csp2=Csp2 double bond in enol tautomers (1.362 Å). 19 Geometrical parameters of the O4–H4⋯O3 hydrogen bond are as follows: d(D–H) = 1.05(3) Å, d(H⋯A) = 1.36(3) Å, d(D⋯A) = 2.3995(14) Å, α(D–H⋯A) = 167(3)°.

Intermolecular interaction energies were calculated using the CE-B3LYP model 20 via CrystalExplorer 21 revealing that two strongest interactions occur between the reference molecule and two neighbors stacked along crystallographic axis a. The dimer comprising the reference molecule and neighboring molecule, related by the symmetry operation 1 − x, 1 − y, 1 − z exhibits an interaction energy of Eint = −88  kJ mol−1, while the interaction with the neighboring molecule described by the symmetry operation −x, 1 − y, 1 − z has Eint = −86 kJ mol−1. Distances between mean molecular planes are approximately 3.4 Å, with the molecules stacking in such a way that virtually all atoms are separated by slightly more than their van der Waals contact distances.

Three rings are involved in stacking interactions (Cg⋯Cg distance less than 4.5 Å): Ω(1) – O3–C4–C3–C9–O4–H4; Ω(2) – O1–C2–C3–C4–C4′–C8′, and Ω(3) – C12–C13–C14–C15–C16–C17. Dimer with strongest interaction involves Ω(1)⋯Ω(4) stacking with parameters d(Cg1⋯Cg4) = 3.864(5) Å, α = 1.9(4)°, and Ω(2)⋯Ω(4) stacking with d(Cg1⃛Cg4) = 3.8768(9) Å, α = 4.72(7)°, where α is dihedral angle between mean ring planes. In contrast, the second strongest dimer interaction involves Ω(1)⋯Ω(4) stacking with d(Cg1⋯Cg4) = 4.162(5) Å and α = 1.9(4)°.

These interactions form a columnar arrangement of molecules, which constitutes the basic structural motif (BSM) of the crystal structure. 22 The interaction energies within the BSM account for 57.4 % of the total interaction energies within the first coordination sphere of the reference molecule.


Corresponding author: Milica G. Bogdanović, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: The authors acknowledge the financial support of the Ministry of Science, Technological Development and Innovation of the Republic of Serbia (Agreement No. 451-03-65/2024-03/200123), Faculty of Sciences and Mathematics, University of Priština in Kosovska Mitrovica (project No. IJ-2304) and Ministry of Science, Technological Development and Innovation of the Republic of Serbia (Grants No. 451-03-66/2024-03/200125 & 451-03-65/2024-03/200125).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Rigaku Oxford Diffraction. CrysAlisPRO Software System; Rigaku Corporation: Wroclaw: Poland, 2022.Search in Google Scholar

2. Sheldrick, G. M. SHELXT – Integrated Space-Group and Crystal Structure Determination. Acta Crystallogr. 2015, A71, 3–8.10.1107/S2053273314026370Search in Google Scholar PubMed PubMed Central

3. Sheldrick, G. M. Crystal Structure Refinement with SHELXL. Acta Crystallogr. 2015, C71, 3–8; https://doi.org/10.1107/s2053229614024218.Search in Google Scholar

4. Spek, A. L. Structure Validation in Chemical Crystallography. Acta Crystallogr. 2009, D65, 148–155; https://doi.org/10.1107/s090744490804362x.Search in Google Scholar

5. Ristić, M.; Radulović, N.; Dekić, B.; Dekić, V.; Ristić, N.; Stojanović-Radić, Z. Synthesis and Spectral Characterization of Asymmetric Azines Containing a Coumarin Moiety: the Discovery of New Antimicrobial and Antioxidant Agents. Chem. Biodivers. 2019, 16, e1800486; https://doi.org/10.1002/cbdv.201800486.Search in Google Scholar PubMed

6. Viegas–Junior, C.; Danuello, A.; da Silva Bolzani, V.; Barreiro, E. J.; Fraga, C. A. Molecular Hybridization: A Useful Tool in the Design of New Drug Prototypes. Curr. Med. Chem. 2007, 14, 1829–1852; https://doi.org/10.2174/092986707781058805.Search in Google Scholar PubMed

7. Ritter, M.; Mastelari Martins, R.; Dias, D.; Pereira, C. M. P. Recent Advances on the Synthesis of Chalcones with Antimicrobial Activities: A Brief Review. Lett. Org. Chem. 2014, 11, 498–508; https://doi.org/10.2174/1570178611666140218004421.Search in Google Scholar

8. Mahapatra, D. K.; Bharti, S. K.; Asati, V. Chalcone Derivatives: Anti-inflammatory Potential and Molecular Targets Perspectives. Curr. Top. Med. Chem. 2017, 17, 3146–3169; https://doi.org/10.2174/1568026617666170914160446.Search in Google Scholar PubMed

9. Mittal, A.; Vashistha, V. K.; Das, D. K. Recent Advances in the Antioxidant Activity and Mechanisms of Chalcone Derivatives: A Computational Review. Free Radic. Res. 2022, 56, 378–397; https://doi.org/10.1080/10715762.2022.2120396.Search in Google Scholar PubMed

10. Radulović, N.; Stojanović-Radić, Z.; Stojanović, P.; Stojanović, N.; Dekić, V.; Dekić, B. A Small Library of 4-(alkylamino)-3-Nitrocoumarin Derivatives with Potent Antimicrobial Activity against Gastrointestinal Pathogens. J. Serb. Chem. Soc. 2015, 80, 315–327; https://doi.org/10.2298/jsc140619085r.Search in Google Scholar

11. Pérez-Cruz, K.; Moncada-Basualto, M.; Morales-Valenzuela, J.; Barriga-González, G.; Navarrete-Encina, P.; Núñez-Vergara, L.; Squella, J.; Olea-Azar, C.; Barriga, G. Synthesis and Antioxidant Study of New Polyphenolic Hybrid-Coumarins. Arab. J. Chem. 2018, 11, 525–537; https://doi.org/10.1016/j.arabjc.2017.05.007.Search in Google Scholar

12. Tătărîngă, G.; Tüzün, B.; Zbancioc, A. Experimental and Theoretical Investigation of Antioxidant Activity of Some Derivatives with Coumarin Scaffold. Farmacia 2023, 71, 359–366; https://doi.org/10.31925/farmacia.2023.2.16.Search in Google Scholar

13. Liu, Y. P.; Yan, G.; Xie, Y. T.; Lin, T. C.; Zhang, W.; Li, J.; Wu, Y. J.; Zhou, J. Y.; Fu, Y. H. Bioactive Prenylated Coumarins as Potential Anti-inflammatory and Anti-HIV Agents from Clausena Lenis. Bioorg. Chem. 2020, 97, 103699; https://doi.org/10.1016/j.bioorg.2020.103699.Search in Google Scholar PubMed

14. Wei, H.; Ruan, J.; Zhang, X. Coumarin–Chalcone Hybrids: Promising Agents with Diverse Pharmacological Properties. RSC Adv. 2016, 6, 10846–10860; https://doi.org/10.1039/c5ra26294a.Search in Google Scholar

15. Abdou, M. M.; El-Saeed, R. A.; Bondock, S. Recent Advances in 4-Hydroxycoumarin Chemistry. Part 1: Synthesis and Reactions. Arab. J. Chem. 2019, 12, 88–121; https://doi.org/10.1016/j.arabjc.2015.06.012.Search in Google Scholar

16. Radnović, N. D.; Dekić, B. R.; Ristić, M. N.; Sejmanović, D. M.; Aksić, M. S.; Krüger, B.; Rodić, M. V. The Crystal Structure of 3-(1-(2-(4-hydroxy-3,5-dimethoxybenzylidene)hydrazinyl)ethylidene)chroman-2, 4-dione Dihydrate, C20H22N2O8. Z. Kristallogr. N. Cryst. Struct. 2023, 238, 171–173; https://doi.org/10.1515/ncrs-2022-0594.Search in Google Scholar

17. Radulović, N. S.; Sejmanović, D. M.; Ristić, M. N.; Dekić, V. S.; Krüger, B.; Kahlenberg, V.; Rodić, M. V. The Crystal Structure of 3-(1-(2-((5-methylthiophen-2-yl)methylene)hydrazinyl)ethylidene)chroman-2,4-dione, C17H14N2O3S. Z. Kristallogr. N. Cryst. Struct. 2022, 237, 775–777; https://doi.org/10.1515/ncrs-2022-0225.Search in Google Scholar

18. Dekić, V. S.; Dekić, B. R.; Sejmanović, D. M.; Janićević, S.; Krüger, B.; Kahlenberg, V.; Rodić, M. V. The Crystal Structure of (Z)-3-(1-(2-((E)-4-isopropylbenzylidene)hydrazinyl)ethylidene)chroman-2,4-dione, C21H20N2O3. Z. Kristallogr. N. Cryst. Struct. 2023, 238, 521–524; https://doi.org/10.1515/ncrs-2023-0062.Search in Google Scholar

19. Allen, F. H.; Watson, D. G.; Brammer, L.; Orpen, A. G.; Taylor, R. Typical Interatomic Distances: Organic Compounds. In International Tables for Crystallography; Fuess, H.; Hahn, T.; Wondratschek, H.; Müller, U.; Shmueli, U.; Prince, E., Eds.; Wiley: Hoboken, Vol. C, 2006; pp. 790–811.10.1107/97809553602060000621Search in Google Scholar

20. Mackenzie, C. F.; Spackman, P. R.; Jayatilaka, D.; Spackman, M. A. CrystalExplorer Model Energies and Energy Frameworks: Extension to Metal Coordination Compounds, Organic Salts, Solvates and Open-Shell Systems. IUCrJ 2017, 4, 575–587; https://doi.org/10.1107/s205225251700848x.Search in Google Scholar PubMed PubMed Central

21. Spackman, P. R.; Turner, M. J.; McKinnon, J. J.; Wolff, S. K.; Grimwood, D. J.; Jayatilaka, D.; Spackman, M. A. CrystalExplorer: A Program for Hirshfeld Surface Analysis, Visualization and Quantitative Analysis of Molecular Crystals. J. Appl. Cryst. 2021, 54, 1006–1011; https://doi.org/10.1107/s1600576721002910.Search in Google Scholar PubMed PubMed Central

22. Shishkin, O. V.; Dyakonenko, V. V.; Maleev, A. V. Supramolecular Architecture of Crystals of Fused Hydrocarbons Based on Topology of Intermolecular Interactions. CrystEngComm 2012, 14, 1795–1804; https://doi.org/10.1039/c2ce06336k.Search in Google Scholar

Received: 2024-10-24
Accepted: 2024-11-29
Published Online: 2024-12-23
Published in Print: 2025-04-28

© 2024 the author(s), published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Articles in the same Issue

  1. Frontmatter
  2. New Crystal Structures
  3. The crystal structure of N-(3-bromo-4-fluorophenyl)-N′-hydroxy-4-{[2-(4-methylphenyl)ethyl]amino}-1,2,5-oxadiazole-3-carboximidamide, C18H17BrFN5O2
  4. Synthesis and crystal structure of ethyl (2S,4aS,6aS,6bR,8aR,12aS,12bR,14bR,E)-10-(((3,4-dichlorobenzyl)oxy)imino)-2,4a,6a,6b,9,9,12a-heptamethyl-13-oxo-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,12b,13,14b-icosahydropicene-2-carboxylate
  5. The crystal structure of pyrazole nitrate
  6. Crystal structure of tetramethyl-bis(μ2-2-(2-hydroxy-3-methoxybenzylidene)-1-(6-(2-(2-hydroxy-3-methoxybenzylidene)hydrazine-1-carbonyl)picolinoyl)hydrazin-1-ido-κ4O,N,O′:O′)ditin(II) ─ ethanol (1/2), C54H62N10O14Sn2
  7. Crystal structure of catena-poly[μ3-iodido-(4-bromopyridine-κ1N)copper(I)], C5H4BrNCuI
  8. The crystal structure of cyclopentadienyl Co–P–C complexes by benzylideneacetone addition, C38H38CoO2P
  9. Synthesis and crystal structure of-(3S,10S,13S,17S)-N-(2-methoxyphenyl)-10,13-dimethyl-17-((R)-1-(phenylamino)ethyl)hexadecahydro-1H-cyclopenta[α]phenanthren-3-amine, C34H48N2O
  10. The crystal structure of (E)-3-((E)-3-(4-ethoxy-3-methoxyphenyl)-1-hydroxyallylidene) chroman-2,4-dione, C21H18O6
  11. The crystal structure of trans–L/D-[bis-(2-methyl-8-hydroxyquinoline-κ2 N,O) bis-(1,3,5-triaza-7-phosphaadamantane-κ2 P)cobalt(III)] tetrafluoroborate
  12. Crystal structure of 9-chloro-2,3,4,4a,5,6-hexahydro-1H-pyrido [1′,2′:1,6]pyrazino[2,3-b]quinoxaline, C14H15ClN4
  13. Crystal structure of 7-(diethylamino)-3-(benzoyl)-2 H -chromen-2-one, C20H19NO3
  14. The crystal structure of 4–bromo-3,5-dinitropyrazole
  15. Crystal structure of 8-hydroxy-3,5,8a-trimethyl-7,8,8a,9-tetrahydronaphtho[2,3-b]furan-4,6-dione, C15H16O4
  16. Crystal structure of 5-hydroxy-3,5,8a-trimethyl-4a,5,6,7,8a,9-hexahydronaphtho[2,3-b]furan-4,8-dione, C15H18O4
  17. Synthesis and crystal structure of-(3S,10S,13S,17S)-N-(2-methoxyphenyl)-10,13-dimethyl-17-((R)-1-(p-tolylamino)ethyl)hexadecahydro-1H-cyclopenta[α]phenanthren-3-amine, C35H50N2O
  18. The crystal structure of catena-poly((μ2-1,3,5-tri(1H- imidazol-1-yl)benzene κ2N:N′)-bis(4-hydroxbenzoato-κ1O)-zinc(II) monohydrate), C29H24N6O7Zn
  19. Crystal structure of 2-(benzo[d]oxazol-2-yl)acetonitrile, C9H6N2O
  20. Crystal structure of 1,3-dihydroxy-6,8-dimethoxy-2-(6-methyltetrahydro-2Hpyran-2-yl)-4a,9a-dihydroanthracene-9,10-dione, C22H22O7
  21. The crystal structure of the double salt potassium 1-methylpiperazine-1,4-di-ium trinitrate, C5H14KN5O9
  22. Crystal structure of 5′-hydroxy-6′-methoxy-1′-methyl-2′,3′,8′,8a′-tetrahydro-1′H-spiro[cyclohexane-1,7′-cyclopenta[ij]isoquinoline]-2,5-dien-4-one, C18H19NO3
  23. The crystal structure of 1,1′-(2,3,5,6-tetramethylpyrazine-1,4-diyl)bis(ethan-1-one), C12H18N2O2
  24. Crystal structure of [μ2-piperazine-1,4-bis(2-hydroxypropanesulfonato-κ2O:O′)] bis(μ2-4,4′-trimethylenedipyridyl-κ2N:N′)disilver(I), C18H24AgN3O4S
  25. Crystal structure of bis ((1-((E)-((4-methoxyphenyl)imino)methyl)naphthalen-2-yl)oxy) copper(II), C36H28CuN2O4
  26. Synthesis and crystal structure of 6,6′-((1E,11E)-5,8-dioxa-2,11-diazadodeca-1,11-diene-1,12-diyl) bis(2,4-di-tert-butylphenol), C36H56N2O4
  27. The crystal structure of barium hexahydroxidoiridate(IV) dihydroxide, Ba2[Ir(OH)6](OH)2
  28. Crystal structure of cinnamoyl ferrocene, C19H16FeO
  29. Crystal structure of (E)-3-(4-butoxyphenyl)acryloylferrocene, C23H24FeO2
  30. Crystal structure of 7-(dimethylamino)-2-hydroxy-2-(trifluoromethyl)-2H-chromene-3-ethyl carboxylate, C15H16F3NO4
  31. The crystal structure of 1-phenylethan-1-aminium 4-hydroxy-3,5-dimethoxybenzoate C17H21NO5
  32. The crystal structure of 1,3,5-trichloro-2-nitrobenzene
  33. The crystal structure of tris(μ2-bromido)-bis(η6-p-cymene)-diosmium(II) tetrafluoroborate, C20H28BBr3F4Os2
  34. Crystal structure of new barium lithium manganese fluorides: Ba14Li1.87Mn14.13F68 with a Jarlite–related structure
  35. Crystal structure of (4-fluorobenzyl)triphenylphosphonium chloride, C25H21ClFP
  36. The crystal structure of calcitriol–chloroform (1/1), C27H44O3⋅CHCl3
  37. The crystal structure of (E)-1-((3)-nitrophenyl)pyren-3-(pyren-1-yl)prop-2-en-1-one, C25H15NO3
  38. Crystal structure of (E)-2-hydroxy-N′-(1-(4-hydroxyphenyl)propylidene)benzohydrazide, C16H16N2O3
  39. Crystal structure of (E)-(3-(thiophen-2-yl)acryloyl)ferrocene, C17H14FeOS
  40. Crystal structure of (E)-(3-(furan-2-yl)acryloyl)ferrocene, C17H14FeO2
  41. Synthesis and crystal structure poly[diaqua(μ3-3-(((7-hydroxy-3-(4-methoxy-3-sulfonatophenyl)-4-oxo-4H-chromen-8-yl) methyl)ammonio)propanoate-κ3 O:O′:O″) sodium(I)] monohydrate, C20H24NNaO12S
  42. Crystal structure of 9-methoxy-4-(2-methoxypyridin-3-yl)-5,6-dihydrobenzo[h]quinazolin-2-amine C19H18N4O2
  43. Synthesis and crystal structure of 4-(difluoromethyl)-1-methyl-N-(pyridin-3-yl)-1H-pyrazole-3-carboxamide hydrate, C11H12F2N4O2
  44. The crystal structure of caesalfurfuric acid B, C22H32O4
  45. The crystal structure of 2-bromo-2-(5-bromo-2-methyl-4-nitro-1H-imidazol-1-yl)-1-phenylethanone, C12H9Br2N3O3
  46. The crystal structure of bis{chlorido-[μ2-(1-oxidopyridin-2-yl)(pyridin-2-yl)amido-κ3 O,N, N′]copper(II)}, C20H16Cl2Cu2N6O2
  47. The crystal structure of 3-amino-2-formyl-1-phenyl-9,10-dihydrophenanthrene-4-carbonitrile, C22H16N2O
  48. The crystal structure of 1,1′-(2,5-dimethylpyrazine-1,4-diyl)bis(ethan-1-one), C10H14N2O2
  49. Crystal structure of 5′-(9-phenyl-9H-carbazol-3-yl)-[2,2′-bithiophene]-5-carbaldehyde, C27H17NOS2
  50. The crystal structure of the double salt dipyridin-1-ium bromide tribromide
  51. Crystal structure of (E)-(3-(3-methylthiophen-2-yl)acryloyl)ferrocene, C18H16FeOS
  52. Crystal structure of (E)-(3-(4-phenoxyphenyl)acryloyl)ferrocene, C25H20FeO2
  53. Crystal structure of (E)-(3-(3,4-dimethylphenyl)acryloyl)ferrocene, C21H20FeO
  54. Crystal structure of [(1,4,8,11-tetraazacyclotetradecane-κ4N,N′,N′′,N‴)tetracyanidodiplatinum(II)] dimethyl sulfoxide solvate, C18H36N8O2Pt2S2
  55. Crystal structure of (4-ethoxybenzyl)triphenylphosphonium bromide ethanol solvate, C29H32BrO2P
  56. Crystal structure of (1-naphthalen-1-yl-methyl)triphenylphosphonium chloride ethanol solvate, C31H30ClOP
  57. Crystal structure of (1,4,8,11-tetraazacyclotetradecane-κ4N,N,N,N‴)platinum(II) bis[tribromido(dimethyl sulfoxide-κS)platinate(II)], C14H36Br6N4O2Pt3S2
  58. Crystal structure of (2-methylbenzyl)triphenylphosphonium chloride ethanol solvate, C28H30ClOP
  59. Crystal structure of bis(η2, σ1-8-methoxycyclooct-4-enyl)(μ2-1,4,8,11-tetraazacyclotetradecane-κ4 N, N, N, N‴)diplatinum(II) dibromide, C28H54Br2N4O2Pt2
  60. Crystal structure of (1,4,8,11-tetraazacyclotetradecane-κ4N,N,N,N)palladium(II) tetrabromidopalladate(II), C10H24Br4N4Pd2
  61. Crystal structure of (1,4,8,11-tetraazacyclotetradecane-κ4N,N,N,N‴)palladium(II) bis[trichlorido(dimethyl sulfoxide-κS)platinate(II)], C14H36Cl6N4O2PdPt2S2
  62. Crystal structure of (1,4,8,11-tetraazacyclotetradecane-κ4N,N′,N″,N‴)palladium(II) tetraiodidopalladate(II), C10H24I4N4Pd2
Downloaded on 2.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2024-0419/html
Scroll to top button