Home Crystal structure of 5′-(9-phenyl-9H-carbazol-3-yl)-[2,2′-bithiophene]-5-carbaldehyde, C27H17NOS2
Article Open Access

Crystal structure of 5′-(9-phenyl-9H-carbazol-3-yl)-[2,2′-bithiophene]-5-carbaldehyde, C27H17NOS2

  • Wen-Ze Zhao ORCID logo EMAIL logo and Feng-Jun Lu
Published/Copyright: February 13, 2025

Abstract

C27H17NOS2, monoclinic, P21/c (no. 14), a = 17.5582(11) Å, b = 12.4355(8) Å, c = 10.0535(5) Å, β = 103.391(2)°, V = 2135.5 Å3, Z = 4, Rgt(F) = 0.0555, wRref(F2) = 0.1093, T = 273 K.

CCDC no.: 2419866

Table 1 contains crystal data and Table 2 contains the list of the atoms including atomic coordinates and display parameters.

Table 1:

Data collection and handling.

Crystal: Yellow block
Size: 0.19 × 0.16 × 0.13 mm
Wavelength: Mo Kα radiation (0.71073 Å)
μ: 0.27 mm−1
Diffractometer, scan mode: Bruker APEX-II CCD, φ and ω scans
θmax, completeness: 28.3°, 100 %
N(hkl)measured, N(hkl)unique, Rint: 27006, 5320, 0.069
Criterion for Iobs, N(hkl)gt: Iobs > 2 σ(Iobs), 3,227
N(param)refined: 280
Programs: Olex2, 1 Bruker, 2 SHELX 3 , Diamond 4
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

x y z U iso */U eq
S1 0.69819 (4) 0.55020 (7) 0.53479 (8) 0.0686 (2)
O1 0.84001 (15) 0.5301 (2) 0.4035 (3) 0.0997 (8)
N1 0.16801 (13) 0.67134 (17) 0.8836 (2) 0.0550 (5)
C1 0.7883 (2) 0.5894 (3) 0.3484 (3) 0.0719 (8)
H1 0.7945 0.6241 0.2696 0.086*
C2 0.71739 (17) 0.6118(2) 0.3930 (3) 0.0598 (7)
S2 0.47516 (4) 0.67246 (6) 0.59383 (8) 0.0633 (2)
C3 0.65852 (18) 0.6796 (2) 0.3347 (3) 0.0674 (8)
H3 0.6585 0.7196 0.2565 0.081*
C4 0.59834 (18) 0.6834 (2) 0.4031 (3) 0.0673 (8)
H4 0.5543 0.7267 0.3759 0.081*
C5 0.61059 (15) 0.6170 (2) 0.5145 (3) 0.0563 (7)
C6 0.56018 (15) 0.5990 (2) 0.6083 (3) 0.0553 (6)
C7 0.56861 (16) 0.5275 (2) 0.7132 (3) 0.0642 (7)
H7 0.6105 0.4801 0.7368 0.077*
C8 0.50780 (16) 0.5324 (2) 0.7819 (3) 0.0637 (7)
H8 0.5058 0.4885 0.8558 0.076*
C9 0.45176 (15) 0.6073 (2) 0.7309 (3) 0.0554 (6)
C10 0.37901 (14) 0.6313 (2) 0.7726 (3) 0.0527 (6)
C11 0.33238 (16) 0.7202 (2) 0.7178 (3) 0.0622 (7)
H11 0.3496 0.7658 0.6577 0.075*
C12 0.26176 (17) 0.7413 (2) 0.7509 (3) 0.0633 (7)
H12 0.2318 0.8005 0.7145 0.076*
C13 0.23671 (15) 0.6713 (2) 0.8404 (3) 0.0519 (6)
C14 0.28266 (15) 0.5825 (2) 0.8976 (3) 0.0510 (6)
C15 0.35366 (15) 0.5645 (2) 0.8643 (3) 0.0538 (6)
H15 0.3848 0.5070 0.9037 0.065*
C16 0.23778 (15) 0.5250 (2) 0.9789 (3) 0.0515 (6)
C17 0.24899 (17) 0.4304 (2) 1.0551 (3) 0.0635 (7)
H17 0.2944 0.3901 1.0625 0.076*
C18 0.19173 (19) 0.3974 (3) 1.1192 (3) 0.0725 (8)
H18 0.1987 0.3342 1.1701 0.087*
C19 0.12372(19) 0.4569 (3) 1.1092 (3) 0.0688 (8)
H19 0.0863 0.4334 1.1547 0.083*
C20 0.11050 (17) 0.5500 (2) 1.0332 (3) 0.0600 (7)
H20 0.0649 0.5898 1.0266 0.072*
C21 0.16753 (15) 0.5819 (2) 0.9671 (3) 0.0519 (6)
C22 0.10023 (16) 0.7360 (2) 0.8310 (3) 0.0559 (7)
C23 0.0926 (2) 0.8330 (3) 0.8892 (4) 0.0847 (10)
H23 0.1321 0.8588 0.9602 0.102*
C24 0.0259 (3) 0.8921 (4) 0.8417 (5) 0.1135 (16)
H24 0.0200 0.9582 0.8814 0.136*
C25 −0.0317 (3) 0.8550 (4) 0.7369 (5) 0.1093 (17)
H25 −0.0772 0.8951 0.7066 0.131*
C26 −0.0229 (2) 0.7584 (4) 0.6758 (5) 0.1032 (14)
H26 −0.0618 0.7335 0.6032 0.124*
C27 0.04422 (19) 0.6982 (3) 0.7230 (4) 0.0789 (9)
H27 0.0511 0.6330 0.6820 0.095*

1 Source of materials

Take (9-phenyl-9H-carbazol-3-yl)boronic acid (0.57 g, 2 mmol), 5′-bromo-[2,2′-bithiophene]-5-carbaldehyde (0.54 g, 2 mmol), 0.10 g tetrakis(triphenylphosphine)palladium,0.4 g K2CO3 and transfer it into a round-bottom flask that has a volume of 250 mL, add 50 mL tetrahydrofuran, 50 mL toluene and 5 mL water. Heat and reflux for 24 h, stop heating, extract with dichloromethane, then wash twice with water and saturated brine, separate by column chromatography using silica, dichloromethane:petroleum ether = 1:2 as the eluent, collect the second band, remove the solvent under pressure, obtain a yellow solid substance of 0.50 g, with a yield of 70 %. Take a small amount of the yellow substance and dissolve it in a mixture of dichloromethane and ethanol, let it volatilize naturally for 6 d to precipitate crystals.

2 Experimental details

Crystal data, data collection and structure refinement details are summarized in Table 1. Using Olex2, 1 the structure was solved using Charge Flipping and refined with the ShelXL 3 refinement. All hydrogen atoms were positioned geometrically, with d (C–H) = 0.97–0.99 Å, Uiso(H) = 1.2 times Ueq(C) and Uiso(H) = 1.5 times Ueq(O).

3 Comment

In recent years, there has been a significant increase in the application of compounds featuring an electron donor-π-electron acceptor structure, particularly in the fields of photodynamic antibacterial 5 , 6 and photodynamic anti-tumor research. 7 , 8 These compounds have garnered considerable interest due to their unique properties, which make them suitable candidates for photodynamic therapy (PDT).

Researchers have reduced the energy difference between the HOMO and LUMO by adjusting the structures of the donor and acceptor components and extending the conjugation length. This modification effectively separates the molecular HOMO and LUMO, resulting in a decreased energy gap between the lowest excited singlet state (S1) and the excited triplet state (T1). 9 , 10

The reduction in this energy gap can significantly enhance interchromophore efficiency. Improved interchromophore efficiency is crucial for applications in photodynamic therapy, where the ability of different chromophores to generate reactive oxygen species (ROS) is vital for effectively targeting bacterial infections and tumor cells. By optimizing the structures and extending the conjugation lengths of these compounds, researchers are paving the way for the development of more effective photodynamic agents.

Compounds containing aldehyde groups can undergo Knoevenagel reactions with compounds containing active methylene groups to form compounds with an electron donor-π-electron acceptor structure 11 under weakly basic catalysts. The target compound’s bond angles and bond lengths fall within normal ranges. This compound was obtained by the reaction of (9-phenyl-9H-carbazol-3-yl)boronic acid with 5′-bromo-[2,2′-bithiophene]-5-carbaldehyde. The crystal structure shows that the two thiophene rings and the carbazole ring are basically parallel, with a dihedral angle of 4.83° between the two thiophene rings, a dihedral angle of 14.13° between the carbazole ring and the adjacent thiophene ring, and a dihedral angle of 84.24° between the benzene ring attached to the carbazole nitrogen atom and the carbazole ring, indicating that the entire molecule is not planar. The molecules are present in an “H” -aggregated form.


Corresponding author: Wen-Ze Zhao, Shandong Vocational College of industry, Zibo, Shandong, 256414, People’s Republic of China, E-mail:

  1. Research funding: This work was supported by the Shandong Provincial Project of Vocational Education Skills Master Studio (2023059).

References

1. Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. J. Appl. Cryst. 2009, 42, 339–341; https://doi.org/10.1107/s0021889808042726.Search in Google Scholar

2. Bruker Apex2, Saintand Sadabs; Bruker AXS Inc.: Madison, Wisconsin, USA, 2012.Search in Google Scholar

3. Sheldrick, G. M. Crystal Structure Refinement with SHELXL. Acta Crystallogr. 2015, C71, 3–8; https://doi.org/10.1107/s2053229614024218.Search in Google Scholar

4. Brandenburg, K. Diamond. Visual Crystal Structure Information System. Ver. 4.0; Crystal Impact: Bonn, Germany, 2015.Search in Google Scholar

5. Peng, S. L.; Song, J. Y.; Wu, S. T.; Wang, Q.; Shen, L. Y.; Li, D. M.; Peng, J.; Zhang, Q. L.; Yang, X. J.; Xu, H.; Redshaw, C.; Li, Y. Aggregation–Induced Emission Photosensitizer with Ag(I)-π Interaction–Enhanced Reactive Oxygen Species for Eliminating Multidrug Resistant Bacteria. ACS Appl. Mater. Interfaces 2024, 16, 30915–30928; https://doi.org/10.1021/acsami.4c05202.Search in Google Scholar PubMed

6. Wang, J. L.; Xia, F. W.; Wang, Y.; Shi, H. Z.; Wang, L. J.; Zhao, Y.; Song, J. X.; Wu, M. Y.; Feng, S. Molecular Charge and Antibacterial Performance Relationships of Aggregation–Induced Emission Photosensitizers. ACS Appl. Mater. Interfaces 2023, 15, 17433–17443; https://doi.org/10.1021/acsami.2c18835.Search in Google Scholar PubMed

7. Shen, L. Y.; Zhang, Q. L.; Yao, Y. C.; Huang, Y. L.; Zheng, Z. C.; Li, M.; Xu, H.; Tan, L.; Liao, X. K.; Xia, B. Y.; Li, L.; Redshaw, C.; Bai, Y.; Yang, C. L. Alkyl Chain Length-Regulated In Situ Intelligent Nano-Assemblies with AIE-Active Photosensitizers for Photodynamic Cancer Therapy. Asian J. Pharm. Sci. 2024, 19, 100967; https://doi.org/10.1016/j.ajps.2024.100967.Search in Google Scholar PubMed PubMed Central

8. Li, Q. H.; Feng, S. M.; Feng, G. Q. A Cell Membrane-Targeted Photosensitizer for Cancer Photodynamic Therapy and Dynamic Ablation Process Tracking. Sensor. Actuator. B Chem. 2025, 422, 136629; https://doi.org/10.1016/j.snb.2024.136629.Search in Google Scholar

9. Sun, W. T.; Wang, X. F.; Cheng, Z. Y.; Wang, X. Y.; Fan, N.; Dong, P. X.; Tong, M. Q.; Liu, Y. L.; Sun, W. Phototheranostics for NIR Fluorescence Image Guided PDT/PTT with Extended Conjugation and Enhanced TICT. Biomed. Pharmacother. 2023, 158, 114071; https://doi.org/10.1016/j.biopha.2022.114071.Search in Google Scholar PubMed

10. Zheng, Z.; Liu, X. H.; Zhai, S. D.; Zhang, H. K.; Shan, G. G.; Kwok, R. T. K.; Ma, C.; Sung, H. H. Y.; Williams, I. D.; Lam, J. Y.; Wong, K. S.; Hu, X. L.; Tang, B. Z. Highly Efficient Singlet Oxygen Generation, Two-Photon Photodynamic Therapy and Melanoma Ablation by Rationally Designed Mitochondria-specific Near-Infrared AIEgens. Chem. Sci. 2020, 11, 2494–2503; https://doi.org/10.1039/c9sc06441a.Search in Google Scholar PubMed PubMed Central

11. Shan, X. F.; Zhou, X.; Wang, Q.; Shen, L. Y.; Xu, H.; Redshaw, C.; Feng, X.; Zhang, Q. L. New Anti-counterfeiting Materials Based on Hemicyanine Dyes: HSO3−/SO32−encryption and UV Light Decryption. J. Mater. Chem. C 2024, 12, 19564. https://doi.org/10.1039/d4tc03676j.Search in Google Scholar

Received: 2025-01-02
Accepted: 2025-01-27
Published Online: 2025-02-13
Published in Print: 2025-04-28

© 2025 the author(s), published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Articles in the same Issue

  1. Frontmatter
  2. New Crystal Structures
  3. The crystal structure of N-(3-bromo-4-fluorophenyl)-N′-hydroxy-4-{[2-(4-methylphenyl)ethyl]amino}-1,2,5-oxadiazole-3-carboximidamide, C18H17BrFN5O2
  4. Synthesis and crystal structure of ethyl (2S,4aS,6aS,6bR,8aR,12aS,12bR,14bR,E)-10-(((3,4-dichlorobenzyl)oxy)imino)-2,4a,6a,6b,9,9,12a-heptamethyl-13-oxo-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,12b,13,14b-icosahydropicene-2-carboxylate
  5. The crystal structure of pyrazole nitrate
  6. Crystal structure of tetramethyl-bis(μ2-2-(2-hydroxy-3-methoxybenzylidene)-1-(6-(2-(2-hydroxy-3-methoxybenzylidene)hydrazine-1-carbonyl)picolinoyl)hydrazin-1-ido-κ4O,N,O′:O′)ditin(II) ─ ethanol (1/2), C54H62N10O14Sn2
  7. Crystal structure of catena-poly[μ3-iodido-(4-bromopyridine-κ1N)copper(I)], C5H4BrNCuI
  8. The crystal structure of cyclopentadienyl Co–P–C complexes by benzylideneacetone addition, C38H38CoO2P
  9. Synthesis and crystal structure of-(3S,10S,13S,17S)-N-(2-methoxyphenyl)-10,13-dimethyl-17-((R)-1-(phenylamino)ethyl)hexadecahydro-1H-cyclopenta[α]phenanthren-3-amine, C34H48N2O
  10. The crystal structure of (E)-3-((E)-3-(4-ethoxy-3-methoxyphenyl)-1-hydroxyallylidene) chroman-2,4-dione, C21H18O6
  11. The crystal structure of trans–L/D-[bis-(2-methyl-8-hydroxyquinoline-κ2 N,O) bis-(1,3,5-triaza-7-phosphaadamantane-κ2 P)cobalt(III)] tetrafluoroborate
  12. Crystal structure of 9-chloro-2,3,4,4a,5,6-hexahydro-1H-pyrido [1′,2′:1,6]pyrazino[2,3-b]quinoxaline, C14H15ClN4
  13. Crystal structure of 7-(diethylamino)-3-(benzoyl)-2 H -chromen-2-one, C20H19NO3
  14. The crystal structure of 4–bromo-3,5-dinitropyrazole
  15. Crystal structure of 8-hydroxy-3,5,8a-trimethyl-7,8,8a,9-tetrahydronaphtho[2,3-b]furan-4,6-dione, C15H16O4
  16. Crystal structure of 5-hydroxy-3,5,8a-trimethyl-4a,5,6,7,8a,9-hexahydronaphtho[2,3-b]furan-4,8-dione, C15H18O4
  17. Synthesis and crystal structure of-(3S,10S,13S,17S)-N-(2-methoxyphenyl)-10,13-dimethyl-17-((R)-1-(p-tolylamino)ethyl)hexadecahydro-1H-cyclopenta[α]phenanthren-3-amine, C35H50N2O
  18. The crystal structure of catena-poly((μ2-1,3,5-tri(1H- imidazol-1-yl)benzene κ2N:N′)-bis(4-hydroxbenzoato-κ1O)-zinc(II) monohydrate), C29H24N6O7Zn
  19. Crystal structure of 2-(benzo[d]oxazol-2-yl)acetonitrile, C9H6N2O
  20. Crystal structure of 1,3-dihydroxy-6,8-dimethoxy-2-(6-methyltetrahydro-2Hpyran-2-yl)-4a,9a-dihydroanthracene-9,10-dione, C22H22O7
  21. The crystal structure of the double salt potassium 1-methylpiperazine-1,4-di-ium trinitrate, C5H14KN5O9
  22. Crystal structure of 5′-hydroxy-6′-methoxy-1′-methyl-2′,3′,8′,8a′-tetrahydro-1′H-spiro[cyclohexane-1,7′-cyclopenta[ij]isoquinoline]-2,5-dien-4-one, C18H19NO3
  23. The crystal structure of 1,1′-(2,3,5,6-tetramethylpyrazine-1,4-diyl)bis(ethan-1-one), C12H18N2O2
  24. Crystal structure of [μ2-piperazine-1,4-bis(2-hydroxypropanesulfonato-κ2O:O′)] bis(μ2-4,4′-trimethylenedipyridyl-κ2N:N′)disilver(I), C18H24AgN3O4S
  25. Crystal structure of bis ((1-((E)-((4-methoxyphenyl)imino)methyl)naphthalen-2-yl)oxy) copper(II), C36H28CuN2O4
  26. Synthesis and crystal structure of 6,6′-((1E,11E)-5,8-dioxa-2,11-diazadodeca-1,11-diene-1,12-diyl) bis(2,4-di-tert-butylphenol), C36H56N2O4
  27. The crystal structure of barium hexahydroxidoiridate(IV) dihydroxide, Ba2[Ir(OH)6](OH)2
  28. Crystal structure of cinnamoyl ferrocene, C19H16FeO
  29. Crystal structure of (E)-3-(4-butoxyphenyl)acryloylferrocene, C23H24FeO2
  30. Crystal structure of 7-(dimethylamino)-2-hydroxy-2-(trifluoromethyl)-2H-chromene-3-ethyl carboxylate, C15H16F3NO4
  31. The crystal structure of 1-phenylethan-1-aminium 4-hydroxy-3,5-dimethoxybenzoate C17H21NO5
  32. The crystal structure of 1,3,5-trichloro-2-nitrobenzene
  33. The crystal structure of tris(μ2-bromido)-bis(η6-p-cymene)-diosmium(II) tetrafluoroborate, C20H28BBr3F4Os2
  34. Crystal structure of new barium lithium manganese fluorides: Ba14Li1.87Mn14.13F68 with a Jarlite–related structure
  35. Crystal structure of (4-fluorobenzyl)triphenylphosphonium chloride, C25H21ClFP
  36. The crystal structure of calcitriol–chloroform (1/1), C27H44O3⋅CHCl3
  37. The crystal structure of (E)-1-((3)-nitrophenyl)pyren-3-(pyren-1-yl)prop-2-en-1-one, C25H15NO3
  38. Crystal structure of (E)-2-hydroxy-N′-(1-(4-hydroxyphenyl)propylidene)benzohydrazide, C16H16N2O3
  39. Crystal structure of (E)-(3-(thiophen-2-yl)acryloyl)ferrocene, C17H14FeOS
  40. Crystal structure of (E)-(3-(furan-2-yl)acryloyl)ferrocene, C17H14FeO2
  41. Synthesis and crystal structure poly[diaqua(μ3-3-(((7-hydroxy-3-(4-methoxy-3-sulfonatophenyl)-4-oxo-4H-chromen-8-yl) methyl)ammonio)propanoate-κ3 O:O′:O″) sodium(I)] monohydrate, C20H24NNaO12S
  42. Crystal structure of 9-methoxy-4-(2-methoxypyridin-3-yl)-5,6-dihydrobenzo[h]quinazolin-2-amine C19H18N4O2
  43. Synthesis and crystal structure of 4-(difluoromethyl)-1-methyl-N-(pyridin-3-yl)-1H-pyrazole-3-carboxamide hydrate, C11H12F2N4O2
  44. The crystal structure of caesalfurfuric acid B, C22H32O4
  45. The crystal structure of 2-bromo-2-(5-bromo-2-methyl-4-nitro-1H-imidazol-1-yl)-1-phenylethanone, C12H9Br2N3O3
  46. The crystal structure of bis{chlorido-[μ2-(1-oxidopyridin-2-yl)(pyridin-2-yl)amido-κ3 O,N, N′]copper(II)}, C20H16Cl2Cu2N6O2
  47. The crystal structure of 3-amino-2-formyl-1-phenyl-9,10-dihydrophenanthrene-4-carbonitrile, C22H16N2O
  48. The crystal structure of 1,1′-(2,5-dimethylpyrazine-1,4-diyl)bis(ethan-1-one), C10H14N2O2
  49. Crystal structure of 5′-(9-phenyl-9H-carbazol-3-yl)-[2,2′-bithiophene]-5-carbaldehyde, C27H17NOS2
  50. The crystal structure of the double salt dipyridin-1-ium bromide tribromide
  51. Crystal structure of (E)-(3-(3-methylthiophen-2-yl)acryloyl)ferrocene, C18H16FeOS
  52. Crystal structure of (E)-(3-(4-phenoxyphenyl)acryloyl)ferrocene, C25H20FeO2
  53. Crystal structure of (E)-(3-(3,4-dimethylphenyl)acryloyl)ferrocene, C21H20FeO
  54. Crystal structure of [(1,4,8,11-tetraazacyclotetradecane-κ4N,N′,N′′,N‴)tetracyanidodiplatinum(II)] dimethyl sulfoxide solvate, C18H36N8O2Pt2S2
  55. Crystal structure of (4-ethoxybenzyl)triphenylphosphonium bromide ethanol solvate, C29H32BrO2P
  56. Crystal structure of (1-naphthalen-1-yl-methyl)triphenylphosphonium chloride ethanol solvate, C31H30ClOP
  57. Crystal structure of (1,4,8,11-tetraazacyclotetradecane-κ4N,N,N,N‴)platinum(II) bis[tribromido(dimethyl sulfoxide-κS)platinate(II)], C14H36Br6N4O2Pt3S2
  58. Crystal structure of (2-methylbenzyl)triphenylphosphonium chloride ethanol solvate, C28H30ClOP
  59. Crystal structure of bis(η2, σ1-8-methoxycyclooct-4-enyl)(μ2-1,4,8,11-tetraazacyclotetradecane-κ4 N, N, N, N‴)diplatinum(II) dibromide, C28H54Br2N4O2Pt2
  60. Crystal structure of (1,4,8,11-tetraazacyclotetradecane-κ4N,N,N,N)palladium(II) tetrabromidopalladate(II), C10H24Br4N4Pd2
  61. Crystal structure of (1,4,8,11-tetraazacyclotetradecane-κ4N,N,N,N‴)palladium(II) bis[trichlorido(dimethyl sulfoxide-κS)platinate(II)], C14H36Cl6N4O2PdPt2S2
  62. Crystal structure of (1,4,8,11-tetraazacyclotetradecane-κ4N,N′,N″,N‴)palladium(II) tetraiodidopalladate(II), C10H24I4N4Pd2
Downloaded on 3.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2025-0002/html
Scroll to top button