Startseite Synthesis and crystal structure of 4-(difluoromethyl)-1-methyl-N-(pyridin-3-yl)-1H-pyrazole-3-carboxamide hydrate, C11H12F2N4O2
Artikel Open Access

Synthesis and crystal structure of 4-(difluoromethyl)-1-methyl-N-(pyridin-3-yl)-1H-pyrazole-3-carboxamide hydrate, C11H12F2N4O2

  • Hao-Wen Huang , Hao-Hong Liu , Si-Tong Lin , Xian-Nv Gan EMAIL logo und Ji Zhang ORCID logo EMAIL logo
Veröffentlicht/Copyright: 7. Februar 2025

CCDC no.: 2419858

C11H12F2N4O2, monoclinic, P21/n, a = 8.2282(16) Å, b = 7.1146(13) Å, c = 21.567(4) Å, β = 100.016(3)°, V = 1243.3(4) Å3, Z = 4, R gt (F) = 0.0403, wR ref (F2) = 0.1210, T = 296(2) K.

Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal: Colorless block
Size: 0.32 × 0.19 × 0.15 mm
Wavelength: Mo Kα radiation (0.71073 Å)
μ: 0.12 mm−1
Diffractometer, scan mode: Bruker APEX-II CCD, φ and ω scans
θmax, completeness: 25.5°, 100 %
N(hkl)measured, N(hkl)unique, Rint: 8568, 2311, 0.022
Criterion for Iobs, N(hkl)gt: Iobs > 2 σ(Iobs), 2,070
N(param)refined: 182
Programs: Bruker, 1 SHELX 2 , 3 , Diamond 4
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

x y z U iso */U eq
C1 0.5314 (2) 0.2166 (3) 0.39550 (8) 0.0481 (4)
H1 0.4755 0.2106 0.4294 0.058*
C2 0.6962 (2) 0.2619 (3) 0.40672 (8) 0.0480 (4)
H2 0.7502 0.2872 0.4474 0.058*
C3 0.7806 (2) 0.2693 (2) 0.35673 (8) 0.0416 (4)
H3 0.8922 0.2998 0.3633 0.050*
C4 0.69683 (19) 0.2305 (2) 0.29671 (7) 0.0346 (4)
C5 0.53036 (19) 0.1870 (2) 0.28957 (8) 0.0413 (4)
H5 0.4731 0.1609 0.2494 0.050*
C6 0.72601 (18) 0.2565 (2) 0.18464 (7) 0.0344 (3)
C7 0.84539 (18) 0.2362 (2) 0.14155 (7) 0.0334 (3)
C8 0.81450 (19) 0.2648 (2) 0.07603 (7) 0.0357 (4)
C9 0.6580 (2) 0.3254 (3) 0.03556 (8) 0.0472 (4)
H9 0.5985 0.4116 0.0591 0.057*
C10 1.00780 (18) 0.1787 (2) 0.15396 (7) 0.0378 (4)
H10 1.0683 0.1482 0.1932 0.045*
C11 1.2256 (2) 0.1201 (4) 0.08794 (9) 0.0626 (6)
H11A 1.2835 0.2293 0.0773 0.094*
H11B 1.2144 0.0315 0.0539 0.094*
H11C 1.2864 0.0634 0.1253 0.094*
N1 0.44847 (17) 0.1808 (2) 0.33800 (7) 0.0475 (4)
N2 0.78679 (15) 0.2298 (2) 0.24661 (6) 0.0376 (3)
H2A 0.8913 0.2104 0.2564 0.045*
N3 0.94591 (17) 0.2274 (2) 0.05003 (6) 0.0414 (4)
N4 1.06216 (16) 0.1749 (2) 0.09917 (6) 0.0410 (4)
O1 0.58099 (14) 0.2949 (2) 0.16469 (5) 0.0487 (4)
O2 0.11221 (18) 0.1078 (3) 0.30265 (7) 0.0684 (5)
F1 0.56210 (16) 0.1759 (2) 0.01635 (8) 0.0894 (5)
F2 0.68776 (16) 0.4112 (2) −0.01736 (6) 0.0845 (5)
H2B 0.215 (4) 0.118 (4) 0.3169 (12) 0.081 (8)*
H2C 0.080 (3) 0.014 (4) 0.3211 (12) 0.080 (8)*

1 Source of materials

3-Aminopyridine, triethylamine, and dichloromethane were added to a 100 mL one-necked flask, cooled to 0 °C, and a solution of 4-(difluoromethyl)-1-methyl-1H-pyrazole-3-carbonyl chloride dissolved in dichloromethane was added slowly under stirring conditions. And they were stirred for 6 h at room temperature. The title compound was obtained by elution and purification using silica gel column chromatography. The crystals of the title compound were obtained after 1 week (Tables 1 and 2).

2 Experimental details

All H atoms were included in calculated positions and refined as riding atoms, with C–H = 0.90–0.97 Å with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for all other H atoms.

3 Comments

Succinate dehydrogenase inhibitors (SDHI) are highly active against a wide range of pathogenic fungi and have become the fastest growing new fungicides in recent years. 5 Succinate dehydrogenase inhibitors mainly inhibit the activity of succinate dehydrogenase in pathogenic fungi, block the electron transfer from succinate to ubiquinone, inhibit the tricarboxylic acid (TCA) cycle, reduce adenosine triphosphate (ATP) synthesis, reduce the metabolic level of pathogenic fungi, and ultimately inhibit the growth of mycelium. 6 , 7 Based on the analysis of commercially available SDHI, it has been found that such fungicides usually consist of three fragments: carboxylic acid, amide bond and amine. 8 , 9 Most of the newly developed SDHIs undergo group substitution and active substructure splicing while retaining the amide bond backbone. 10 SDHI fungicides have the advantages of novel structure, ease of development, high activity, high selectivity, and good market prospects. 11 , 12 Although it has been applied as an agricultural fungicide for nearly 70 years, it is still widely concerned by researchers in the field of pesticides and is one of the hotspots for the creation of new pesticides. 13

In the molecules of the title structure bond lengths and angles are very similar to those given in the literature. 14 , 15 In the title structure, the dihedral angle between pyridine ring and pyrazole ring is 32.18(6)°. The torsion angles of C8–C7–C6–O1, C8–C7–C6–N2, C7–C6–N2–C5 and C6–N2–C5–C4 are 3.1(2)°, −177.0(1)°, −176.0(1)° and 25.9(2)°, respectively. Intermolecular N–H⋯O hydrogen bonds and O–H⋯N hydrogen bonds connect adjacent molecules to form a one-dimensional chain structure. Intermolecular O–H⋯O hydrogen bonds further connect adjacent one-dimensional chain structures to form two-dimensional network structures.


Corresponding authors: Ji Zhang, Jiangxi Agricultural University, Jiangxi Provincial Key Laboratory of Improved Variety Breeding and Efficient Utilization of Native Tree Species (2024SSY04093), East China Woody Fragrance and Flavor Engineering Research Center of National Forestry and Grassland Administration, The Institute of Plant Natural Products and Forest Products Chemical Engineering, Nanchang 330045, China, E-mail: ; and Xian-Nv Gan, Jiangxi University of Finance and Economics, Nanchang 330077, China, E-mail:

Acknowledgments

X-ray data were collected at Instrumental Analysis Center Nanchang Hangkong University, Nanchang, 330063, People’s Republic of China.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This research was funded by the Special Funding for Major Scientific and Technological Research and Development in Jiangxi Province (20203ABC28W016), Central Finance Forestry Science and Technology Promotion Demonstration Fund Project (JXTG[2024]27), Jiangxi Provincial Forestry Bureau Science and Technology Innovation Project (Innovation Special Project [2024]3) and Ji'an Science and Technology Programme (20222-191725, 20223-127620, 2024H-100185).

  3. Conflict of interest: The authors declare no conflicts of interest regarding this article.

References

1. Bruker. APEX2, SAINT and SADABS. Brucker AXS Inc.: Madison, Wisconsin, USA, 2009.Suche in Google Scholar

2. Sheldrick, G. M. A Short History of SHELX. Acta Crystallogr. 2008, A64, 112–122; https://doi.org/10.1107/s0108767307043930.Suche in Google Scholar PubMed

3. Sheldrick, G. M. Crystal Structure Refinement with SHELXL. Acta Crystallogr. 2015, C71, 3–8; https://doi.org/10.1107/s2053229614024218.Suche in Google Scholar

4. Brandenburg, K. DIAMOND. Visual Crystal Structure Information System. Ver. 4.0; Crystal Impact: Bonn, Germany, 2015.Suche in Google Scholar

5. Masiello, M.; Somma, S.; Haidukowski, M.; Logrieco, A. F.; Moretti, A. Genetic Polymorphisms Associated to SDHI Fungicides Resistance in Selected Aspergillus flavus Strains and Relation with Aflatoxin Production. Int. J. Food Microbiol. 2020, 334, 108799. https://doi.org/10.1016/j.ijfoodmicro.2020.108799.Suche in Google Scholar PubMed

6. Avenot, H. F.; Michailides, T. J. Progress in Understanding Molecular Mechanisms and Evolution of Resistance to Succinate Dehydrogenase Inhibiting (SDHI) Fungicides in Phytopathogenic Fungi. Crop Protect. 2010, 29 (7), 643–651. https://doi.org/10.1016/j.cropro.2010.02.019.Suche in Google Scholar

7. Hou, Y. P.; Chen, Y. L.; Qu, X. P.; Wang, J. X.; Zhou, M. G. Effects of a Novel SDHI Fungicide Pyraziflumid on the Biology of the Plant Pathogenic Fungi Bipolaris Maydis. Pest Biochem. Physiol. 2018, 149, 20–25. https://doi.org/10.1016/j.pestbp.2018.05.004.Suche in Google Scholar PubMed

8. Kikutake, K.; Furuya, T.; Hasebe, M.; Nagai, H.; Oda, M. Development of a Novel Fungicide, Pyraziflumid. J. Pestic. Sci. 2020, 45 (3), 184–190. https://doi.org/10.1584/jpestics.J20–02.10.1584/jpestics.J20-02Suche in Google Scholar PubMed PubMed Central

9. Wu, S.; Lei, L.; Liu, M.; Song, Y.; Lu, S.; Li, D.; Shi, H.; Raley-Susman, K. M.; He, D. Single and Mixture Toxicity of Strobilurin and SDHI Fungicides to Xenopus Tropicalis Embryos. Ecotoxicol. Environ. Saf. 2018, 153, 8–15. https://doi.org/10.1016/j.ecoenv.2018.01.045.Suche in Google Scholar PubMed

10. Duarte, H. C.; Tête, A.; Debizet, K.; Imler, J.; Tomkiewicz-Raulet, C.; Blanc, E. B.; Barouki, R.; Coumoul, X.; Bortoli, S. SDHi Fungicides: An Example of Mitotoxic Pesticides Targeting the Succinate Dehydrogenase Complex. Environ. Int. 2023, 180, 108219. https://doi.org/10.1016/j.envint.2023.108219.Suche in Google Scholar PubMed

11. Di, S.; Diao, Z.; Xie, Y.; Cang, T.; Wang, Z.; Qi, P.; Liu, Z.; Zhao, H.; Wang, X. Study on the Enantioselective Behaviors, Activity, Toxicity and Mechanism of Novel SDHI Fungicide Benzovindiflupyr to Reduce the Environmental Risks. Ecotoxicol. Environ. Saf. 2024, 282, 116735. https://doi.org/10.1016/j.ecoenv.2024.116735.Suche in Google Scholar PubMed

12. Ishii, H.; Zhen, F.; Hu, M. J.; Li, X. P.; Schnabel, G. Efficacy of SDHI Fungicides, Including Benzovindiflupyr, against Colletotrichum Species. Pest Manag. Sci. 2016, 72 (10), 1844–1853. https://doi.org/10.1002/ps.4216.Suche in Google Scholar PubMed

13. He, L.; Cui, K.; Song, Y.; Li, T.; Liu, N.; Mu, W.; Liu, F. Activity of the Novel Succinate Dehydrogenase Inhibitor Fungicide Pydiflumetofen against SDHI-Sensitive and SDHI-Resistant Isolates of Botrytis Cinerea and Efficacy against Gray Mold. Plant Dis. 2020, 104 (8), 2168–2173. https://doi.org/10.1094/PDIS-12–19–2564–RE.10.1094/PDIS-12-19-2564-RESuche in Google Scholar PubMed

14. Zhong, L.; Zeng, R.; Huang, C.; Ding, Q. Y.; Shi, M. Z.; Wang, J.; Nie, X. L.; Chen, J. Z.; Chen, S. X.; Peng, D. Y. Design, Synthesis and Antifungal Activity of Novel Pyrazole Amides Derivates. J. Mol. Struct. 2023, 1277, 134881. https://doi.org/10.1016/j.molstruc.2022.134881.Suche in Google Scholar

15. Levterov, V. V.; Panasiuk, Y.; Shablykin, O.; Stashkevych, O.; Sahun, K.; Rassokhin, A.; Sadkova, I.; Lesyk, D.; Anisiforova, A.; Holota, Y.; Borysko, P.; Bodenchuk, I.; Voloshchuk, N. M.; Mykhailiuk, P. K. Angew. Chem. Int. Ed. 2024, 63; https://doi.org/10.1002/anie.202319831.Suche in Google Scholar PubMed

Received: 2024-12-27
Accepted: 2025-01-27
Published Online: 2025-02-07
Published in Print: 2025-04-28

© 2025 the author(s), published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Artikel in diesem Heft

  1. Frontmatter
  2. New Crystal Structures
  3. The crystal structure of N-(3-bromo-4-fluorophenyl)-N′-hydroxy-4-{[2-(4-methylphenyl)ethyl]amino}-1,2,5-oxadiazole-3-carboximidamide, C18H17BrFN5O2
  4. Synthesis and crystal structure of ethyl (2S,4aS,6aS,6bR,8aR,12aS,12bR,14bR,E)-10-(((3,4-dichlorobenzyl)oxy)imino)-2,4a,6a,6b,9,9,12a-heptamethyl-13-oxo-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,12b,13,14b-icosahydropicene-2-carboxylate
  5. The crystal structure of pyrazole nitrate
  6. Crystal structure of tetramethyl-bis(μ2-2-(2-hydroxy-3-methoxybenzylidene)-1-(6-(2-(2-hydroxy-3-methoxybenzylidene)hydrazine-1-carbonyl)picolinoyl)hydrazin-1-ido-κ4O,N,O′:O′)ditin(II) ─ ethanol (1/2), C54H62N10O14Sn2
  7. Crystal structure of catena-poly[μ3-iodido-(4-bromopyridine-κ1N)copper(I)], C5H4BrNCuI
  8. The crystal structure of cyclopentadienyl Co–P–C complexes by benzylideneacetone addition, C38H38CoO2P
  9. Synthesis and crystal structure of-(3S,10S,13S,17S)-N-(2-methoxyphenyl)-10,13-dimethyl-17-((R)-1-(phenylamino)ethyl)hexadecahydro-1H-cyclopenta[α]phenanthren-3-amine, C34H48N2O
  10. The crystal structure of (E)-3-((E)-3-(4-ethoxy-3-methoxyphenyl)-1-hydroxyallylidene) chroman-2,4-dione, C21H18O6
  11. The crystal structure of trans–L/D-[bis-(2-methyl-8-hydroxyquinoline-κ2 N,O) bis-(1,3,5-triaza-7-phosphaadamantane-κ2 P)cobalt(III)] tetrafluoroborate
  12. Crystal structure of 9-chloro-2,3,4,4a,5,6-hexahydro-1H-pyrido [1′,2′:1,6]pyrazino[2,3-b]quinoxaline, C14H15ClN4
  13. Crystal structure of 7-(diethylamino)-3-(benzoyl)-2 H -chromen-2-one, C20H19NO3
  14. The crystal structure of 4–bromo-3,5-dinitropyrazole
  15. Crystal structure of 8-hydroxy-3,5,8a-trimethyl-7,8,8a,9-tetrahydronaphtho[2,3-b]furan-4,6-dione, C15H16O4
  16. Crystal structure of 5-hydroxy-3,5,8a-trimethyl-4a,5,6,7,8a,9-hexahydronaphtho[2,3-b]furan-4,8-dione, C15H18O4
  17. Synthesis and crystal structure of-(3S,10S,13S,17S)-N-(2-methoxyphenyl)-10,13-dimethyl-17-((R)-1-(p-tolylamino)ethyl)hexadecahydro-1H-cyclopenta[α]phenanthren-3-amine, C35H50N2O
  18. The crystal structure of catena-poly((μ2-1,3,5-tri(1H- imidazol-1-yl)benzene κ2N:N′)-bis(4-hydroxbenzoato-κ1O)-zinc(II) monohydrate), C29H24N6O7Zn
  19. Crystal structure of 2-(benzo[d]oxazol-2-yl)acetonitrile, C9H6N2O
  20. Crystal structure of 1,3-dihydroxy-6,8-dimethoxy-2-(6-methyltetrahydro-2Hpyran-2-yl)-4a,9a-dihydroanthracene-9,10-dione, C22H22O7
  21. The crystal structure of the double salt potassium 1-methylpiperazine-1,4-di-ium trinitrate, C5H14KN5O9
  22. Crystal structure of 5′-hydroxy-6′-methoxy-1′-methyl-2′,3′,8′,8a′-tetrahydro-1′H-spiro[cyclohexane-1,7′-cyclopenta[ij]isoquinoline]-2,5-dien-4-one, C18H19NO3
  23. The crystal structure of 1,1′-(2,3,5,6-tetramethylpyrazine-1,4-diyl)bis(ethan-1-one), C12H18N2O2
  24. Crystal structure of [μ2-piperazine-1,4-bis(2-hydroxypropanesulfonato-κ2O:O′)] bis(μ2-4,4′-trimethylenedipyridyl-κ2N:N′)disilver(I), C18H24AgN3O4S
  25. Crystal structure of bis ((1-((E)-((4-methoxyphenyl)imino)methyl)naphthalen-2-yl)oxy) copper(II), C36H28CuN2O4
  26. Synthesis and crystal structure of 6,6′-((1E,11E)-5,8-dioxa-2,11-diazadodeca-1,11-diene-1,12-diyl) bis(2,4-di-tert-butylphenol), C36H56N2O4
  27. The crystal structure of barium hexahydroxidoiridate(IV) dihydroxide, Ba2[Ir(OH)6](OH)2
  28. Crystal structure of cinnamoyl ferrocene, C19H16FeO
  29. Crystal structure of (E)-3-(4-butoxyphenyl)acryloylferrocene, C23H24FeO2
  30. Crystal structure of 7-(dimethylamino)-2-hydroxy-2-(trifluoromethyl)-2H-chromene-3-ethyl carboxylate, C15H16F3NO4
  31. The crystal structure of 1-phenylethan-1-aminium 4-hydroxy-3,5-dimethoxybenzoate C17H21NO5
  32. The crystal structure of 1,3,5-trichloro-2-nitrobenzene
  33. The crystal structure of tris(μ2-bromido)-bis(η6-p-cymene)-diosmium(II) tetrafluoroborate, C20H28BBr3F4Os2
  34. Crystal structure of new barium lithium manganese fluorides: Ba14Li1.87Mn14.13F68 with a Jarlite–related structure
  35. Crystal structure of (4-fluorobenzyl)triphenylphosphonium chloride, C25H21ClFP
  36. The crystal structure of calcitriol–chloroform (1/1), C27H44O3⋅CHCl3
  37. The crystal structure of (E)-1-((3)-nitrophenyl)pyren-3-(pyren-1-yl)prop-2-en-1-one, C25H15NO3
  38. Crystal structure of (E)-2-hydroxy-N′-(1-(4-hydroxyphenyl)propylidene)benzohydrazide, C16H16N2O3
  39. Crystal structure of (E)-(3-(thiophen-2-yl)acryloyl)ferrocene, C17H14FeOS
  40. Crystal structure of (E)-(3-(furan-2-yl)acryloyl)ferrocene, C17H14FeO2
  41. Synthesis and crystal structure poly[diaqua(μ3-3-(((7-hydroxy-3-(4-methoxy-3-sulfonatophenyl)-4-oxo-4H-chromen-8-yl) methyl)ammonio)propanoate-κ3 O:O′:O″) sodium(I)] monohydrate, C20H24NNaO12S
  42. Crystal structure of 9-methoxy-4-(2-methoxypyridin-3-yl)-5,6-dihydrobenzo[h]quinazolin-2-amine C19H18N4O2
  43. Synthesis and crystal structure of 4-(difluoromethyl)-1-methyl-N-(pyridin-3-yl)-1H-pyrazole-3-carboxamide hydrate, C11H12F2N4O2
  44. The crystal structure of caesalfurfuric acid B, C22H32O4
  45. The crystal structure of 2-bromo-2-(5-bromo-2-methyl-4-nitro-1H-imidazol-1-yl)-1-phenylethanone, C12H9Br2N3O3
  46. The crystal structure of bis{chlorido-[μ2-(1-oxidopyridin-2-yl)(pyridin-2-yl)amido-κ3 O,N, N′]copper(II)}, C20H16Cl2Cu2N6O2
  47. The crystal structure of 3-amino-2-formyl-1-phenyl-9,10-dihydrophenanthrene-4-carbonitrile, C22H16N2O
  48. The crystal structure of 1,1′-(2,5-dimethylpyrazine-1,4-diyl)bis(ethan-1-one), C10H14N2O2
  49. Crystal structure of 5′-(9-phenyl-9H-carbazol-3-yl)-[2,2′-bithiophene]-5-carbaldehyde, C27H17NOS2
  50. The crystal structure of the double salt dipyridin-1-ium bromide tribromide
  51. Crystal structure of (E)-(3-(3-methylthiophen-2-yl)acryloyl)ferrocene, C18H16FeOS
  52. Crystal structure of (E)-(3-(4-phenoxyphenyl)acryloyl)ferrocene, C25H20FeO2
  53. Crystal structure of (E)-(3-(3,4-dimethylphenyl)acryloyl)ferrocene, C21H20FeO
  54. Crystal structure of [(1,4,8,11-tetraazacyclotetradecane-κ4N,N′,N′′,N‴)tetracyanidodiplatinum(II)] dimethyl sulfoxide solvate, C18H36N8O2Pt2S2
  55. Crystal structure of (4-ethoxybenzyl)triphenylphosphonium bromide ethanol solvate, C29H32BrO2P
  56. Crystal structure of (1-naphthalen-1-yl-methyl)triphenylphosphonium chloride ethanol solvate, C31H30ClOP
  57. Crystal structure of (1,4,8,11-tetraazacyclotetradecane-κ4N,N,N,N‴)platinum(II) bis[tribromido(dimethyl sulfoxide-κS)platinate(II)], C14H36Br6N4O2Pt3S2
  58. Crystal structure of (2-methylbenzyl)triphenylphosphonium chloride ethanol solvate, C28H30ClOP
  59. Crystal structure of bis(η2, σ1-8-methoxycyclooct-4-enyl)(μ2-1,4,8,11-tetraazacyclotetradecane-κ4 N, N, N, N‴)diplatinum(II) dibromide, C28H54Br2N4O2Pt2
  60. Crystal structure of (1,4,8,11-tetraazacyclotetradecane-κ4N,N,N,N)palladium(II) tetrabromidopalladate(II), C10H24Br4N4Pd2
  61. Crystal structure of (1,4,8,11-tetraazacyclotetradecane-κ4N,N,N,N‴)palladium(II) bis[trichlorido(dimethyl sulfoxide-κS)platinate(II)], C14H36Cl6N4O2PdPt2S2
  62. Crystal structure of (1,4,8,11-tetraazacyclotetradecane-κ4N,N′,N″,N‴)palladium(II) tetraiodidopalladate(II), C10H24I4N4Pd2
Heruntergeladen am 3.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2024-0487/html
Button zum nach oben scrollen