Startseite Crystal structure of (E)-(3-(4-phenoxyphenyl)acryloyl)ferrocene, C25H20FeO2
Artikel Open Access

Crystal structure of (E)-(3-(4-phenoxyphenyl)acryloyl)ferrocene, C25H20FeO2

  • Jie Gao , Shuang Zhang , Yanan Wang , Yucong Guo und Bin Liu ORCID logo EMAIL logo
Veröffentlicht/Copyright: 7. Februar 2025

Abstract

C25H20FeO2, monoclinic, P21/c (no. 14), a = 15.9672(10) Å, b = 5.7830(4) Å, c = 20.9889(15) Å, β = 104.017(3)°, V = 1880.4(2) Å3, Z = 4, R gt (F) = 0.0565 wR ref (F2) = 0.1227, T = 173 K.

CCDC no.: 2403105

Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal: Red block
Size 0.15 × 0.08 × 0.06 mm
Wavelength: Mo Kα radiation (0.71073 Å)
μ: 1.16 mm−1
Diffractometer, scan mode: Bruker D8 Venture, φ and ω scans
θmax, completeness: 26.4°, 100 %
N(hkl)measured, N(hkl)unique, Rint: 5300, 2520, 0.050
Criterion for Iobs, N(hkl)gt: Iobs > 2 σ(Iobs), 2,384
N(param)refined: 191
Programs: Bruker, 1 SHELX, 2 , 3 Olex2 4
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Fe1 0.36030 (3) 0.28816 (8) 0.35293 (2) 0.02664 (17)
O1 0.95524 (16) 0.2543 (4) 0.32997 (12) 0.0347 (6)
O2 0.54593 (17) 0.7211 (4) 0.38580 (13) 0.0395 (7)
C1 1.0967 (2) 0.6339 (7) 0.44974 (19) 0.0344 (9)
H1 1.116426 0.654418 0.495862 0.041*
C2 1.0398 (2) 0.4556 (6) 0.42536 (17) 0.0292 (8)
H2 1.020816 0.353238 0.454353 0.035*
C3 1.0112 (2) 0.4297 (6) 0.35795 (17) 0.0259 (8)
C4 1.0398 (2) 0.5742 (7) 0.31548 (18) 0.0323 (9)
H4 1.020376 0.553564 0.269352 0.039*
C5 1.0969 (2) 0.7489 (7) 0.34063 (19) 0.0374 (10)
H5 1.117237 0.847979 0.311523 0.045*
C6 1.1252 (2) 0.7819 (7) 0.40770 (19) 0.0368 (9)
H6 1.163566 0.904875 0.424660 0.044*
C7 0.8918 (2) 0.1854 (6) 0.36169 (16) 0.0256 (8)
C8 0.8212 (2) 0.3252 (6) 0.35908 (16) 0.0250 (8)
H8 0.818098 0.472821 0.338763 0.030*
C9 0.7543 (2) 0.2508 (6) 0.38615 (16) 0.0240 (8)
C10 0.7611 (2) 0.0330 (6) 0.41594 (17) 0.0277 (8)
H10 0.715741 −0.021874 0.434038 0.033*
C11 0.8329 (2) −0.1022 (6) 0.41921 (18) 0.0296 (9)
H11 0.837450 −0.248076 0.440609 0.035*
C12 0.8989 (2) −0.0268 (6) 0.39135 (17) 0.0303 (9)
H12 0.948097 −0.121088 0.392944 0.036*
C13 0.6797 (2) 0.4035 (6) 0.38369 (16) 0.0270 (8)
H13 0.684067 0.557484 0.369071 0.032*
C14 0.6075 (2) 0.3470 (6) 0.39981 (18) 0.0314 (9)
H14 0.599676 0.191611 0.411813 0.038*
C15 0.5385 (2) 0.5168 (6) 0.39987 (17) 0.0286 (8)
C16 0.4612 (2) 0.4328 (6) 0.41859 (16) 0.0261 (8)
C17 0.3846 (2) 0.5666 (6) 0.41464 (17) 0.0300 (9)
H17 0.376794 0.724802 0.402420 0.036*
C18 0.3227 (3) 0.4215 (7) 0.43215 (18) 0.0356 (9)
H18 0.265901 0.465525 0.433711 0.043*
C19 0.3593 (2) 0.2000 (7) 0.44697 (17) 0.0314 (9)
H19 0.331429 0.070195 0.460422 0.038*
C20 0.4445 (2) 0.2034 (6) 0.43844 (16) 0.0291 (8)
H20 0.483579 0.076784 0.444722 0.035*
C21 0.3915 (3) 0.2719 (8) 0.26438 (19) 0.0482 (12)
H21 0.443507 0.325890 0.255220 0.058*
C22 0.3766 (3) 0.0469 (7) 0.28622 (17) 0.0366 (10)
H22 0.416884 −0.076925 0.294244 0.044*
C23 0.2915 (3) 0.0399 (7) 0.29388 (19) 0.0384 (10)
H23 0.264255 −0.089681 0.308095 0.046*
C24 0.2536 (3) 0.2584 (8) 0.2768 (2) 0.0523 (13)
H24 0.196404 0.301611 0.277480 0.063*
C25 0.3151 (4) 0.4010 (8) 0.25870 (19) 0.0578 (14)
H25 0.306726 0.557582 0.244960 0.069*

1 Source of materials

The 4-phenoxybenzaldehyde (4.36 g, 22.0 mmol), acetylferrocene (2.28 g, 10.0 mmol) and KOH (0.67 g, 12.0 mmol) were added to the mortar. After stirring well, the reaction mixture was ground for 20 min, until the TLC indicated the reaction was completed, then diluted with water and filtered. The solid was collected and washed with water, and dried overnight under vacuum. The crude product was further purified by flash silica chromatography to afford a single crystal of high quality. For crystal growth, the crude product was dissolved in a minimal amount of hot ethanol and slowly cooled to room temperature.

2 Experimental details

Single-crystal X-ray diffraction data were collected using a Bruker D8 Venture diffractometer with Mo Kα radiation. 1 The structure was solved using the SHELX-2014 software and refined through full-matrix least-squares on F2, 2 , 3 with anisotropic displacement parameters for non-hydrogen atoms. Hydrogen atoms were positioned in idealized geometries and refined using a riding model. Data analysis and validation of the structural model were performed in the Olex2 software suite. 4

3 Comment

Ferrocene derivatives have shown to have applications in materials science, catalysis, and medicinal chemistry. 5 , 6 The unique sandwich structure of ferrocene imparts remarkable stability and electronic properties, making it an excellent framework for functionalization. 7 , 8 , 9 , 10 , 11 (3-(4–Phenoxyphenyl)acryloyl) ferrocene represents an intriguing example of such a hybrid molecule, combining the ferrocene core with conjugated system, which is crucial for potential applications.

The ferrocene moiety adopts a typical sandwich structure, with the iron atom (Fe1) positioned symmetrically between the two cyclopentadienyl (Cp) rings. The Fe–C bond distances range from approximately 2.02 to 2.05 Å, consistent with standard values for substituted ferrocene derivatives. The Cp rings exhibit nearly ideal parallel alignment with a centroid-to-centroid distance of approximately 3.33 Å, confirming the stability of the ferrocene framework. 12 , 13 , 14 , 15 , 16 , 17 , 18 The acrylate unit is conjugated with the phenyl ring, forming an extended π-system that adopts an (E)-configuration. The C=C bond length (C13–C14) is 1.319(5) Å, indicative of a double bond. The carbonyl group (C=O) exhibits a bond length of 1.230(5) Å, typical for conjugated ketones.

The phenoxyphenyl group connected to the acrylate chain forms a nearly coplanar geometry with the conjugated system, minimizing steric hindrance and promoting delocalization of π-electrons. The bond angle between the phenoxy and phenyl rings is approximately 118.3°.

No significant hydrogen bonding interactions are observed in the crystal.


Corresponding author: Bin Liu, Xianyang Key Laboratory of Molecular Imaging and Drug Synthesis, School of Pharmacy, Shaanxi Institute of International Trade & Commerce, Xianyang, Shaanxi, China, E-mail:

Acknowledgments

This work was financially supported by the projects of Natural Science Foundation of Shannxi Province (2023–YBSF-009, 2024JC–YBMS-733), the 2023 research and development project of the Xianyang Science and Technology Bureau (L2023–ZDYF–SF-030), Key Laboratory of Molecular Imaging and Drug Synthesis of Xianyang city (2021QXNL–PT-0008), School-level Scientific and Technological Innovation Team for Design, Synthesis and Structural Modification of Drug Molecules (2024KCTD04).

References

1. Bruker. SAINT, APEX2 and SADABS. Bruker AXS Inc.: Madison, WI, USA, 2012.Suche in Google Scholar

2. Sheldrick, G. M. SHELXT – Integrated Space-Group and Crystal-Structure Determination. Acta Crystallogr. 2015, A71, 3–8; https://doi.org/10.1107/s2053273314026370.Suche in Google Scholar PubMed PubMed Central

3. Sheldrick, G. M. Crystal Structure Refinement with SHELXL. Acta Crystallogr. 2015, C71, 3–8; https://doi.org/10.1107/s2053229614024218.Suche in Google Scholar

4. Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A.; Puschmann, H. OLEX2: a Complete Structure Solution, Refinement and Analysis Program. J. Appl. Crystallogr. 2009, 42, 339–341; https://doi.org/10.1107/s0021889808042726.Suche in Google Scholar

5. Zábranský, M.; Císařová, I.; Štěpnička, P. Ferrocenylmethylation Reactions with a Phosphinoferrocene Betaine. Dalton Trans. 2015, 44, 14494–14506; https://doi.org/10.1039/c5dt01877c.Suche in Google Scholar PubMed

6. Štěpnička, P. Forever Young: the First Seventy Years of Ferrocene. Dalton Trans. 2022, 51, 8085–8102; https://doi.org/10.1039/d2dt00903j.Suche in Google Scholar PubMed

7. Liu, X. F.; Li, R. F.; Fu, X.; Shen, H.; wen, M.; Feng, X. Syntheses, Characterizations, and Reactivity of Two Cu(I)–Amido Complexes: Proposed Intermediate in Cu(I)–Catalyzed Goldberg Reaction. Russian J. Coord. Chem. 2018, 44, 353–358; https://doi.org/10.1134/s1070328418050044.Suche in Google Scholar

8. Mata, J. A.; Peris, E.; Llusar, R.; Uriel, S.; Cifuentes, M. P.; Humphrey, M. G.; Samoc, M.; Luther–Davies, B. Syntheses, Structures and Nonlinear Optical Properties of Ferrocenyl Complexes with Arylethenyl Substituents. Eur. J. Inorg. Chem. 2001, 2001, 2113–2122; https://doi.org/10.1002/1099-0682(200108)2001:8<2113::aid-ejic2113>3.0.co;2-i.10.1002/1099-0682(200108)2001:8<2113::AID-EJIC2113>3.0.CO;2-ISuche in Google Scholar

9. Jong, S.–J, Fang, J.–M, Liu, Y.–H, Wang, Y., Synthesis of Symmetric and Unsymmetric 1,1′–Dialkenylferrocenes via Samarium Diiodide Promoted Reactions of 1,1′–Diacetylferrocene with Halides. J. Chin. Chem. Soc. 2001, 48, 1041–1046; https://doi.org/10.1002/jccs.200100152.Suche in Google Scholar

10. Savani, C. J.; Roy, H.; Verma, S. K.; Vennapu, D. R.; Singh, V. K. Synthesis, Characterization and Evaluation of Novel Ferrocenylmethylamine Derivatives as Cytotoxic Agents. Appl. Organomet. Chem. 2021, 35, e6137; https://doi.org/10.1002/aoc.6137.Suche in Google Scholar

11. Ossola, F.; Tomasin, P.; Benetollo, F.; Foresti, E.; Vigato, P. A. Synthesis, Structure and Properties of New Ferrocene-Containing Compounds. Inorg. Chim. Acta 2003, 353, 292–300; https://doi.org/10.1016/s0020-1693(03)00222-6.Suche in Google Scholar

12. Shafir, A.; Fiedler, D.; Arnold, J. Formation of 1 : 1 Complexes of Ferrocene-Containing Salen Ligands with Mg, Ti and Zr. J. Chem. Society, Dalton Trans. 2002, 555–560; https://doi.org/10.1039/b107066p.Suche in Google Scholar

13. Champaka, G.; Senthilkumar, K.; David, E.; Shanmugan, S.; Palanisami, N. Monomeric Zinc Ferrocene Carboxylate [Zn(FcCOO)(3,5-dmp)2Cl] Derived from 3, 5-dimethylpyrazole: Structural, Optical, Electrochemical and Antimicrobial Studies. J. Mol. Struct. 2021, 1228, 129749; https://doi.org/10.1016/j.molstruc.2020.129749.Suche in Google Scholar

14. Kang, T.; Kim, N.; Cheng, P. T.; Zhang, H.; Foo, K.; Engle, K. M. Nickel–Catalyzed 1,2–Carboamination of Alkenyl Alcohols. J. Am. Chem. Soc. 2021, 143, 13962–13970; https://doi.org/10.1021/jacs.1c07112.Suche in Google Scholar PubMed

15. Höcher, T., Blaurock, S., Hey–Hawkins, E. Novel Ferrocene Derivatives with PH–Functionalized Phosphanylalkylcyclopentadienyl Ligands: Syntheses and Molecular Structures of rac-[Fe {(η5–C5H4)CMe2PHR }2] (R = Ph, Mes) and rac-[Fe{(η5–C5H4)CMe2PHPh(Cp*TaCl4)}2], Eur. J. Inorg. Chem. 2002, 2002 1174–1180; https://doi.org/10.1002/1099-0682(200205)2002:5<1174::aid-ejic1174>3.0.co;2-a.10.1002/1099-0682(200205)2002:5<1174::AID-EJIC1174>3.0.CO;2-ASuche in Google Scholar

16. Erb, W.; Wen, M.; Pierre Hurvois, J.; Mongin, F.; Halauko, Y. S.; Ivashkevich, O. A.; Matulis, V. E.; Roisnel, T. O–Isopropylferrocenesulfonate: Synthesis of Polysubstituted Derivatives and Electrochemical Study. Eur. J. Inorg. Chem. 2021, 2021, 3165–3176; https://doi.org/10.1002/ejic.202100448.Suche in Google Scholar

17. Ramírez–Gómez, A.; Gutiérrez–Hernández, A. I.; Alvarado- Castillo, M. A.; Toscano, R. A.; Ortega–Alfaro, M. C.; López–Cortés, J. G. Selenoamides as Powerful Scaffold to Build Imidazo[1,5-A]pyridines Using a Grinding Protocol. J. Organomet. Chem. 2020, 919, 121315; https://doi.org/10.1016/j.jorganchem.2020.121315.Suche in Google Scholar

18. G. Calvarin, D. Weigel, Structure cristalline et moleculaire de l’acetyl–I′benzoylferrocene. Acta Crystallogr. Section B 1971, 27, 1253–1263; https://doi.org/10.1107/s0567740871003820.Suche in Google Scholar

Received: 2025-01-04
Accepted: 2025-01-27
Published Online: 2025-02-07
Published in Print: 2025-04-28

© 2025 the author(s), published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Artikel in diesem Heft

  1. Frontmatter
  2. New Crystal Structures
  3. The crystal structure of N-(3-bromo-4-fluorophenyl)-N′-hydroxy-4-{[2-(4-methylphenyl)ethyl]amino}-1,2,5-oxadiazole-3-carboximidamide, C18H17BrFN5O2
  4. Synthesis and crystal structure of ethyl (2S,4aS,6aS,6bR,8aR,12aS,12bR,14bR,E)-10-(((3,4-dichlorobenzyl)oxy)imino)-2,4a,6a,6b,9,9,12a-heptamethyl-13-oxo-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,12b,13,14b-icosahydropicene-2-carboxylate
  5. The crystal structure of pyrazole nitrate
  6. Crystal structure of tetramethyl-bis(μ2-2-(2-hydroxy-3-methoxybenzylidene)-1-(6-(2-(2-hydroxy-3-methoxybenzylidene)hydrazine-1-carbonyl)picolinoyl)hydrazin-1-ido-κ4O,N,O′:O′)ditin(II) ─ ethanol (1/2), C54H62N10O14Sn2
  7. Crystal structure of catena-poly[μ3-iodido-(4-bromopyridine-κ1N)copper(I)], C5H4BrNCuI
  8. The crystal structure of cyclopentadienyl Co–P–C complexes by benzylideneacetone addition, C38H38CoO2P
  9. Synthesis and crystal structure of-(3S,10S,13S,17S)-N-(2-methoxyphenyl)-10,13-dimethyl-17-((R)-1-(phenylamino)ethyl)hexadecahydro-1H-cyclopenta[α]phenanthren-3-amine, C34H48N2O
  10. The crystal structure of (E)-3-((E)-3-(4-ethoxy-3-methoxyphenyl)-1-hydroxyallylidene) chroman-2,4-dione, C21H18O6
  11. The crystal structure of trans–L/D-[bis-(2-methyl-8-hydroxyquinoline-κ2 N,O) bis-(1,3,5-triaza-7-phosphaadamantane-κ2 P)cobalt(III)] tetrafluoroborate
  12. Crystal structure of 9-chloro-2,3,4,4a,5,6-hexahydro-1H-pyrido [1′,2′:1,6]pyrazino[2,3-b]quinoxaline, C14H15ClN4
  13. Crystal structure of 7-(diethylamino)-3-(benzoyl)-2 H -chromen-2-one, C20H19NO3
  14. The crystal structure of 4–bromo-3,5-dinitropyrazole
  15. Crystal structure of 8-hydroxy-3,5,8a-trimethyl-7,8,8a,9-tetrahydronaphtho[2,3-b]furan-4,6-dione, C15H16O4
  16. Crystal structure of 5-hydroxy-3,5,8a-trimethyl-4a,5,6,7,8a,9-hexahydronaphtho[2,3-b]furan-4,8-dione, C15H18O4
  17. Synthesis and crystal structure of-(3S,10S,13S,17S)-N-(2-methoxyphenyl)-10,13-dimethyl-17-((R)-1-(p-tolylamino)ethyl)hexadecahydro-1H-cyclopenta[α]phenanthren-3-amine, C35H50N2O
  18. The crystal structure of catena-poly((μ2-1,3,5-tri(1H- imidazol-1-yl)benzene κ2N:N′)-bis(4-hydroxbenzoato-κ1O)-zinc(II) monohydrate), C29H24N6O7Zn
  19. Crystal structure of 2-(benzo[d]oxazol-2-yl)acetonitrile, C9H6N2O
  20. Crystal structure of 1,3-dihydroxy-6,8-dimethoxy-2-(6-methyltetrahydro-2Hpyran-2-yl)-4a,9a-dihydroanthracene-9,10-dione, C22H22O7
  21. The crystal structure of the double salt potassium 1-methylpiperazine-1,4-di-ium trinitrate, C5H14KN5O9
  22. Crystal structure of 5′-hydroxy-6′-methoxy-1′-methyl-2′,3′,8′,8a′-tetrahydro-1′H-spiro[cyclohexane-1,7′-cyclopenta[ij]isoquinoline]-2,5-dien-4-one, C18H19NO3
  23. The crystal structure of 1,1′-(2,3,5,6-tetramethylpyrazine-1,4-diyl)bis(ethan-1-one), C12H18N2O2
  24. Crystal structure of [μ2-piperazine-1,4-bis(2-hydroxypropanesulfonato-κ2O:O′)] bis(μ2-4,4′-trimethylenedipyridyl-κ2N:N′)disilver(I), C18H24AgN3O4S
  25. Crystal structure of bis ((1-((E)-((4-methoxyphenyl)imino)methyl)naphthalen-2-yl)oxy) copper(II), C36H28CuN2O4
  26. Synthesis and crystal structure of 6,6′-((1E,11E)-5,8-dioxa-2,11-diazadodeca-1,11-diene-1,12-diyl) bis(2,4-di-tert-butylphenol), C36H56N2O4
  27. The crystal structure of barium hexahydroxidoiridate(IV) dihydroxide, Ba2[Ir(OH)6](OH)2
  28. Crystal structure of cinnamoyl ferrocene, C19H16FeO
  29. Crystal structure of (E)-3-(4-butoxyphenyl)acryloylferrocene, C23H24FeO2
  30. Crystal structure of 7-(dimethylamino)-2-hydroxy-2-(trifluoromethyl)-2H-chromene-3-ethyl carboxylate, C15H16F3NO4
  31. The crystal structure of 1-phenylethan-1-aminium 4-hydroxy-3,5-dimethoxybenzoate C17H21NO5
  32. The crystal structure of 1,3,5-trichloro-2-nitrobenzene
  33. The crystal structure of tris(μ2-bromido)-bis(η6-p-cymene)-diosmium(II) tetrafluoroborate, C20H28BBr3F4Os2
  34. Crystal structure of new barium lithium manganese fluorides: Ba14Li1.87Mn14.13F68 with a Jarlite–related structure
  35. Crystal structure of (4-fluorobenzyl)triphenylphosphonium chloride, C25H21ClFP
  36. The crystal structure of calcitriol–chloroform (1/1), C27H44O3⋅CHCl3
  37. The crystal structure of (E)-1-((3)-nitrophenyl)pyren-3-(pyren-1-yl)prop-2-en-1-one, C25H15NO3
  38. Crystal structure of (E)-2-hydroxy-N′-(1-(4-hydroxyphenyl)propylidene)benzohydrazide, C16H16N2O3
  39. Crystal structure of (E)-(3-(thiophen-2-yl)acryloyl)ferrocene, C17H14FeOS
  40. Crystal structure of (E)-(3-(furan-2-yl)acryloyl)ferrocene, C17H14FeO2
  41. Synthesis and crystal structure poly[diaqua(μ3-3-(((7-hydroxy-3-(4-methoxy-3-sulfonatophenyl)-4-oxo-4H-chromen-8-yl) methyl)ammonio)propanoate-κ3 O:O′:O″) sodium(I)] monohydrate, C20H24NNaO12S
  42. Crystal structure of 9-methoxy-4-(2-methoxypyridin-3-yl)-5,6-dihydrobenzo[h]quinazolin-2-amine C19H18N4O2
  43. Synthesis and crystal structure of 4-(difluoromethyl)-1-methyl-N-(pyridin-3-yl)-1H-pyrazole-3-carboxamide hydrate, C11H12F2N4O2
  44. The crystal structure of caesalfurfuric acid B, C22H32O4
  45. The crystal structure of 2-bromo-2-(5-bromo-2-methyl-4-nitro-1H-imidazol-1-yl)-1-phenylethanone, C12H9Br2N3O3
  46. The crystal structure of bis{chlorido-[μ2-(1-oxidopyridin-2-yl)(pyridin-2-yl)amido-κ3 O,N, N′]copper(II)}, C20H16Cl2Cu2N6O2
  47. The crystal structure of 3-amino-2-formyl-1-phenyl-9,10-dihydrophenanthrene-4-carbonitrile, C22H16N2O
  48. The crystal structure of 1,1′-(2,5-dimethylpyrazine-1,4-diyl)bis(ethan-1-one), C10H14N2O2
  49. Crystal structure of 5′-(9-phenyl-9H-carbazol-3-yl)-[2,2′-bithiophene]-5-carbaldehyde, C27H17NOS2
  50. The crystal structure of the double salt dipyridin-1-ium bromide tribromide
  51. Crystal structure of (E)-(3-(3-methylthiophen-2-yl)acryloyl)ferrocene, C18H16FeOS
  52. Crystal structure of (E)-(3-(4-phenoxyphenyl)acryloyl)ferrocene, C25H20FeO2
  53. Crystal structure of (E)-(3-(3,4-dimethylphenyl)acryloyl)ferrocene, C21H20FeO
  54. Crystal structure of [(1,4,8,11-tetraazacyclotetradecane-κ4N,N′,N′′,N‴)tetracyanidodiplatinum(II)] dimethyl sulfoxide solvate, C18H36N8O2Pt2S2
  55. Crystal structure of (4-ethoxybenzyl)triphenylphosphonium bromide ethanol solvate, C29H32BrO2P
  56. Crystal structure of (1-naphthalen-1-yl-methyl)triphenylphosphonium chloride ethanol solvate, C31H30ClOP
  57. Crystal structure of (1,4,8,11-tetraazacyclotetradecane-κ4N,N,N,N‴)platinum(II) bis[tribromido(dimethyl sulfoxide-κS)platinate(II)], C14H36Br6N4O2Pt3S2
  58. Crystal structure of (2-methylbenzyl)triphenylphosphonium chloride ethanol solvate, C28H30ClOP
  59. Crystal structure of bis(η2, σ1-8-methoxycyclooct-4-enyl)(μ2-1,4,8,11-tetraazacyclotetradecane-κ4 N, N, N, N‴)diplatinum(II) dibromide, C28H54Br2N4O2Pt2
  60. Crystal structure of (1,4,8,11-tetraazacyclotetradecane-κ4N,N,N,N)palladium(II) tetrabromidopalladate(II), C10H24Br4N4Pd2
  61. Crystal structure of (1,4,8,11-tetraazacyclotetradecane-κ4N,N,N,N‴)palladium(II) bis[trichlorido(dimethyl sulfoxide-κS)platinate(II)], C14H36Cl6N4O2PdPt2S2
  62. Crystal structure of (1,4,8,11-tetraazacyclotetradecane-κ4N,N′,N″,N‴)palladium(II) tetraiodidopalladate(II), C10H24I4N4Pd2
Heruntergeladen am 2.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2025-0005/html
Button zum nach oben scrollen