Home The crystal structure of 3,5-bis(propan-2-yl)-1H-pyrazol-4-amine, C9H17N3
Article Open Access

The crystal structure of 3,5-bis(propan-2-yl)-1H-pyrazol-4-amine, C9H17N3

  • Kiyoshi Fujisawa ORCID logo EMAIL logo , Keigo Ageishi , Mitsuki Okano and Edward R. T. Tiekink ORCID logo
Published/Copyright: September 10, 2022

Abstract

C9H17N3, monoclinic, P21/c (no. 14), a = 9.5601(3) Å, b = 9.5210(3) Å, c = 10.7651(3) Å, β = 94.564(3)°, V = 976.75(5) Å3, Z = 4, Rgt (F) = 0.0432, wRref (F 2) = 0.1223, T = 178(2) K.

CCDC no.: 2202375

The crystal structure is shown in the figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal: Prism, colourless
Size: 0.19 × 0.07 × 0.04 mm
Wavelength: Mo Kα radiation (0.71073 Å)
μ: 0.07 mm−1
Diffractometer, scan mode: Rigaku XtaLAB P200, ω-scans
θ max, completeness: 29.8°, >99%
N(hkl)measured, N(hkl)unique, R int: 15975, 2582, 0.034
Criterion for I obs, N(hkl)gt: I obs > 2 σ(I obs), 2127
N(param)refined: 122
Programs: CrysAlisPRO [1], SIR2014 [2], SHELX [3], WinGX and ORTEP [4]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

x y z U iso*/U eq
N1 0.47275 (10) 0.17033 (10) 0.68661 (9) 0.0249 (2)
H1N 0.5387 (12) 0.1081 (12) 0.6726 (12) 0.030*
N2 0.34837 (10) 0.17139 (10) 0.61700 (9) 0.0273 (2)
N3 0.31020 (9) 0.44672 (10) 0.84709 (8) 0.0222 (2)
H2N 0.3173 (13) 0.4205 (14) 0.9260 (8) 0.027*
H3N 0.2224 (10) 0.4731 (13) 0.8267 (12) 0.027*
C1 0.27106 (11) 0.27139 (12) 0.66664 (10) 0.0238 (2)
C2 0.34845 (11) 0.33464 (10) 0.76847 (9) 0.0198 (2)
C3 0.47736 (11) 0.26740 (11) 0.77825 (9) 0.0212 (2)
C4 0.12207 (11) 0.29831 (14) 0.61499 (11) 0.0301 (3)
H4 0.081467 0.372650 0.667019 0.036*
C5 0.03294 (14) 0.16496 (17) 0.62323 (13) 0.0431 (3)
H5A 0.070151 0.091008 0.571784 0.065*
H5B −0.064370 0.185392 0.593106 0.065*
H5C 0.036147 0.133383 0.710054 0.065*
C6 0.11468 (14) 0.35035 (14) 0.48039 (12) 0.0366 (3)
H6A 0.170408 0.436328 0.475910 0.055*
H6B 0.016829 0.370069 0.451578 0.055*
H6C 0.152060 0.278028 0.427345 0.055*
C7 0.60226 (11) 0.28694 (12) 0.87017 (10) 0.0257 (2)
H7 0.581459 0.367367 0.925529 0.031*
C8 0.73342 (13) 0.32456 (17) 0.80541 (13) 0.0414 (3)
H8A 0.756801 0.247188 0.750701 0.062*
H8B 0.811805 0.340683 0.868127 0.062*
H8C 0.715946 0.409972 0.755792 0.062*
C9 0.62567 (17) 0.15707 (14) 0.95224 (13) 0.0421 (3)
H9A 0.541606 0.139126 0.996286 0.063*
H9B 0.706024 0.172837 1.012992 0.063*
H9C 0.644398 0.075841 0.900173 0.063*

Source of material

To iron powder (0.9995 g, 17.9 mmol) in degassed ethanol (5 mL) was added gradually and drop wise a mixture of 3,5-di-isopropyl-4-nitropyrazole (1.0068 g, 5.10 mmol), prepared as in the literature [5] in degassed ethanol (30 mL) and NH4Cl (2.7458 g, 51.02 mmol) in degassed distilled water (15 ml). The solution was refluxed at 100 °C for 2 h. After cooling to room temperature, the obtained solution was filtered to remove an unknown black powder. Then, the solution was extracted with diethyl ether (10 mL × 4). The crystallisation was carried out from a mixture of diethylether and n-heptane (1:1 v/v) to yield pale needles with a red-brown tinge (0.4721 g, 2.82 mmol). The colourless crystals for the X-ray study were obtained by slow evaporation of a mixture of dichloromethane and n-heptane (1:1 v/v). Yield: 55%. Anal. Calcd. for C9H17N3: C, 64.63; H, 10.25; N, 25.12%. Found: C, 64.55; H, 10.26; N, 24.91%. 1 H NMR (CDCl3, 500 MHz): δ 2.97 (sep, C(H), 2H, J = 7.0 Hz), 1.29 (d, CH3, 12H, J = 7.0 Hz). 13 C{1 H} NMR (CDCl3, 125 MHz): δ 21.6 (C(H)), 25.3 (CH3), 119.9 (pz-4C), 143.7 (pz-3C, pz-5C). IR (KBr, cm−1): 3374(s) & 3140(vs) ν(N—H); 2965(vs), 2929(s) & 2865(s) ν(C—H); 1599(s) ν(C = N).

Experimental details

The C-bound H atoms were geometrically placed (C—H = 0.98–1.00 Å) and refined as riding with U iso(H) = 1.2–1.5U eq(C). The N-bound H atoms were located from a difference map and refined with N—H = 0.88 ± 0.01 Å and with U iso(H) = 1.2U eq(N). Owing to poor agreement, one reflection affected by the beam-stop, i.e. (1 0 0), was removed from the final cycles of refinement.

Discussion

Pyrazole, a five-membered heterocycle containing two adjacent nitrogen atoms, is one of the more useful motifs found in many small molecules with a wide range of agricultural and pharmaceutical activities [6]. Therefore, the functionalisation of the pyrazole scaffold is an attractive research area with much work accomplished over the last few decades. Moreover, along with metal-organic frameworks [7], covalent organic frameworks (COF’s) are now recognised as being of considerable interest [8, 9]. One way of generating covalent bonds in COF’s, is to employ Schiff base reactions, that is, a reaction between a primary amine with an aldehyde or a ketone under specific conditions. These a very effective reactions and appropriately substituted pyrazoles functionalised with primary amines can be employed for the construction of COF’s [9]. In this context and from a modified literature method [5, 10], it was possible to obtain 3,5-di-isopropyl-4-nitropyrazole in ca 75% yield by a nitration reaction with a mixed acid solution of conc. H2SO4/conc. HNO3 (3/1 v/v). The title pyrazole, (I), was then obtained by the reduction of the aforementioned nitro precursor with iron powder/NH4Cl in ca. 50% yield following a modified synthetic procedure [11].

The molecular structure of (I) is shown in the upper view of the figure (70% displacement ellipsoids). The pyrazole ring is planar with the r.m.s. deviation of the five atoms comprising the ring being only 0.003 Å with the maximum deviations out of the plane being ±0.003 Å for the N1 and N2 atoms, respectively. The observed planarity of the five-membered ring along with the near equivalence of the C1—N2 [1.3421(14) Å] and C3—N1 [1.3499(13) Å] bond lengths, and of the C1—C2 [1.4080(14) Å] and C2—C3 [1.3853(14) Å] bonds, are consistent with substantial delocalisation of π-electron density in the pyrazole ring. The N1—N2 [1.3541(13) Å] bond lengths reflects this observation also. Finally, the exocyclic C2—N3 [1.4276(13) Å] bond is considerably longer than the endocyclic C—N bonds.

There are only three related crystal structures in the literature available for comparison, which reflects the novelty of (I) functionalised with an amine group [10]. The most closely related structure to (I) is in fact the synthetic precursor to (I), which has a nitro group instead of the amine group [5, 10]. Here, the nitro substituent is close to co-planar with the pyrazole ring, forming a dihedral angle of 5.2(5)°. In the t-butyl analogue of the aforementioned [10], the nitro group is twisted out of the plane through the pyrazole ring, forming a dihedral angle of 48.08(11)°. The third structure worthy of mention is the nitroso-substituted analogue of the previous structure where both components of the disordered nitroso group lie approximately in the plane of the ring [12].

A standard analysis of the molecular packing was conducted by employing PLATON [13], which indicated the key role of conventional hydrogen bonding in arranging the molecules into supramolecular layers in the bc-plane. A view of the layer is shown in the lower part of the figure whereby the highly directional pyrazole–N1—H1n⃛N3(amine) [N1—H1n⃛N3 i : H1n⃛N3 i = 2.131(12) Å, N1⃛N3 i = 3.0149(13) Å with angle at H1n = 174.5(11)° for symmetry operation (i): 1 − x, −1/2 + y, 3/2 − z] and amine–N3⃛N2(pyrazole) [N3—H2n⃛N2 ii : H2n⃛N2 ii = 2.233(10) Å, N3⃛N2 ii = 3.1099(13) Å with angle at H2n = 172.5(11)° for (ii): x, 1/2 − y, 1/2 + z] hydrogen bonds connect molecules. The result of these hydrogen bonds is the formation of 10-membered {⃛HN⃛HNN}2 synthons. There is no apparent role for the amine–H3n atom in directional intermolecular interactions. Indeed, the layers stack along the a-axis without directional interactions between them largely owing to the observation that the iso-propyl groups project out of and to either side of the two-dimensional array.

A further analysis of the molecular packing was conducted employing CrystalExplorer [14] following standard methods [15]. The absence of directional interactions between molecules along the a-axis is reflected in the significant contribution to the calculated Hirshfeld surface by H⃛H contacts which amounts to a rather high 79.9%. The next most significant contribution arise from N⃛H/H⃛N contacts [15.3%], in part reflecting the N—H⃛N hydrogen bonding within the layers, and from C⃛H/H⃛C contacts [4.7%].


Corresponding author: Kiyoshi Fujisawa, Department of Chemistry, Ibaraki University, Mito, Ibaraki 310-8512, Japan, E-mail:

Funding source: Sunway University Sdn Bhd is thanked for support of crystallographic work through Grant No. GRTIN–RRO-56–2022

Acknowledgments

KF is grateful for support from the joint usage/research programme “Artificial Photosynthesis” based at Osaka City University.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: Sunway University Sdn Bhd is thanked for support of crystallographic work through Grant No. GRTIN–RRO-56–2022

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Rigaku Oxford Diffraction. CrysAlisPRO; Rigaku Corporation: Oxford, UK, 2015.Search in Google Scholar

2. Burla, M. C., Caliandro, R., Carrozzini, B., Cascarano, G. L., Cuocci, C., Giacovazzo, C., Mallamo, M., Mazzone, A., Polidori, G. Crystal structure determination and refinement via SIR2014. J. Appl. Crystallogr. 2015, 48, 306–309; https://doi.org/10.1107/s1600576715001132.Search in Google Scholar

3. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. 2015, C71, 3–8; https://doi.org/10.1107/s2053229614024218.Search in Google Scholar

4. Farrugia, L. J. WinGX and ORTEP for Windows: an update. J. Appl. Crystallogr. 2012, 45, 849–854; https://doi.org/10.1107/s0021889812029111.Search in Google Scholar

5. Ochando, L. E., Amigó, J. M., Rius, J., Louër, D., Fontenas, C., Elguero, J. The crystal structure of 3,5-diisopropyl-4-nitropyrazole from X-ray powder diffraction data. J. Mol. Struct. 2001, 562, 11–17; https://doi.org/10.1016/s0022-2860(00)00766-3.Search in Google Scholar

6. Fustero, S., Sánchez-Roselló, M., Barrio, P., Simón-Fuentes, A. From 2000 to mid-2010: a fruitful decade for the synthesis of pyrazoles. Chem. Rev. 2011, 111, 6984–7034; https://doi.org/10.1021/cr2000459.Search in Google Scholar PubMed

7. Kitagawa, S., Kitamura, R., Noro, S. Functional porous coordination polymers. Angew. Chem. Int. Ed. 2004, 43, 2334–2375; https://doi.org/10.1002/anie.200300610.Search in Google Scholar PubMed

8. Ma, T., Kapustin, E. A., Yin, S. X., Liang, L., Zhou, Z., Niu, J., Li, L.-H., Wang, Y., Su, J., Li, J., Wang, X., Wang, W. D., Wang, W., Sun, J., Yaghi, O. M. Single-crystal X-ray diffraction structures of covalent organic frameworks. Science 2018, 361, 48–52; https://doi.org/10.1126/science.aat7679.Search in Google Scholar PubMed

9. Kandambeth, S., Dey, K., Banerjee, R. Covalent organic frameworks: chemistry beyond the structure. J. Am. Chem. Soc. 2019, 141, 1807–1822; https://doi.org/10.1021/jacs.8b10334.Search in Google Scholar PubMed

10. Llamas-Saiz, A. L., Foces-Foces, C., Cano, F. H., Jiménez, P., Laynez, J., Meutermans, W., Elguero, J., Limbach, H.-H., Aguilar-Parrilla, F. The influence of the nitro group on the solid-state structure of 4-nitropyrazoles: the cases of pyrazole, 3,5-dimethylpyrazole, 3,5-di-tert-butylpyrazole and 3,5-diphenylpyrazole. I. Static aspects (crystallography and thermodynamics). Acta Crystallogr. 1994, B50, 746–762; https://doi.org/10.1107/S0108768194004180.Search in Google Scholar

11. Seixas, J. D., Luengo-Arratta, S. A., Diaz, R., Saldivia, M., Rojas-Barros, D. I., Manzano, P., Gonzalez, S., Berlanga, M., Smith, T. K., Navarro, M., Pollastri, M. P. Establishment of a structure-activity relationship of 1H-imidazo[4,5-c]quinoline-based kinase inhibitor NVP-BEZ235 as a lead for African sleeping sickness. J. Med. Chem. 2014, 57, 4834–4848; https://doi.org/10.1021/jm500361r.Search in Google Scholar PubMed PubMed Central

12. Fletcher, D. A., Gowenlock, B. G., Orrell, K. G., Šik, V., Hibbs, D. E., Hursthouse, M. B., Abdul Malik, K. M. Studies in nitrosopyrazoles. Part 2.1 Solution and solid-state NMR studies of 3,5-disubstituted and 1,3,5-trisubstituted-4-nitrosopyrazoles. Crystal structures of 1,3,5-trimethyl-4-nitrosopyrazole and 3,5-di-tert-butyl-4-nitrosopyrazole. J. Chem. Soc., Perkin Trans. 1997, 2, 721–728; https://doi.org/10.1039/a607063i.Search in Google Scholar

13. Spek, A. L. checkCIF validation ALERTS: what they mean and how to respond. Acta Crystallogr. 2020, E76, 1–11; https://doi.org/10.1107/s2056989019016244.Search in Google Scholar

14. Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D., Spackman, M. A. CrystalExplorer: a program for Hirshfeld surface analysis, visualization and quantitative analysis of molecular crystals. J. Appl. Crystallogr. 2021, 54, 1006–1011; https://doi.org/10.1107/s1600576721002910.Search in Google Scholar PubMed PubMed Central

15. Tan, S. L., Jotani, M. M., Tiekink, E. R. T. Utilizing Hirshfeld surface calculations, non-covalent interaction (NCI) plots and the calculation of interaction energies in the analysis of molecular packing. Acta Crystallogr. 2019, E75, 308–318; https://doi.org/10.1107/s2056989019001129.Search in Google Scholar

Received: 2022-07-17
Accepted: 2022-08-19
Published Online: 2022-09-10
Published in Print: 2022-12-16

© 2022 the author(s), published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Articles in the same Issue

  1. Frontmatter
  2. New Crystal Structures
  3. The crystal structure of 1,5-bis(4-chlorophenyl)-3-(3-methylphenyl)pentane- 1,5-dione, C48H40Cl4O4
  4. Crystal structure of (bis(1,10-phenanthroline-κ 2 N,N′))-(3,5-dinitrosalicylato-κ 2 O,O′)nickel(II), C31H18N6NiO7
  5. Crystal structure of {N,N′-bis(4-fluoro-salicylaldehyde)-3,6-dioxa-1,8-diaminooctane-κ4 O,N,N′,O′}zinc(II), C20H20F2N2O4Zn
  6. [5-Bromo-2-(2-(dimethylamino)ethyliminomethyl)phenolato-κ3 N,N′,O]-isothiocyanato-nickel(II), C12H14BrN3NiOS
  7. Crystal structure of 9-bromo-4-(6-methoxypyridin-2-yl)-5,6-dihydrobenzo[h]quinazolin- 2-amine, C18H15BrN4O
  8. The crystal structure of imidazolium nitrate, C3H5O3N3
  9. Crystal structure of diiodido-bis(6,6′-dimethoxy-2,2′-(ethane-1,2-diylbis(nitrilomethanylylidene)) diphenolato)tricadmium(II), C36H36Cd3I2N4O8
  10. Crystal structure of [diaqua-bis(2-((1H-tetrazol-1-yl)methyl)-5-carboxy-1H-imidazole-4-carboxylato-κ2 N,O) manganese(II)] dihydrate, C14H18MnN12O12
  11. Crystal structure of Diaqua[5,5′-dicarboxy-2,2′-(propane-1,3-diyl)bis(1H-imidazole-4-carboxylato-k4 O,O′,N,N′)]iron(II), C13H14FeN4O10
  12. Crystal structure of poly[dimethanol-κ1O-(µ2-(E)-2-((2-oxidobenzylidene)amino)acetato)-(µ3-(E)-2-((2-oxidobenzylidene)amino)acetato)dicadmium(II)], C20H22Cd2N2O8
  13. Crystal structure of N 2,N 6-bis(2-(((E)-quinolin-8-ylmethylene)amino)phenyl)pyridine-2,6-dicarboxamide, C39H27N7O2
  14. An I 6 2 anion in the crystal structure of theophyllinium triiodide monohydrate, C7H11I3N4O3
  15. The crystal structure of poly[6,6′-oxybis(4-(pyridin-1-ium-1-yl)-1,3,5,2,4,6-trioxatriborinan-2-olate)], [B6O9](C5H5N)2
  16. The crystal structure of (carbonato κ2 O,O′)(2-oxopyridin-1(2H)-olato-κN)tris(trimethylphosphine)rhodium(III) water solvate, C15H33NO5P3Rh
  17. The crystal structure of dibromido-bis((RS)-2-(4-chlorophenyl)-2-(1,2,4-triazol-1-ylmethyl)hexanenitrile-κ1 N)zinc(II), C30H34Br2Cl2N8Zn
  18. Synthesis and crystal structure of 3-(((7-hydroxy-3-(4-hydroxy-3,5-dinitrophenyl)-4-oxo-4H-chromen-8-yl)methyl)(nitroso)amino)propanoic acid, C19H14N4O11
  19. The crystal structure of 3-((4-chloro-N-(2-methoxyethyl)benzamido)methyl)phenyl methanesulfonate, C18H20ClNO5S
  20. Crystal structure of di([1,1′:3′,1″-terphenyl]-2′-yl)tellane, C36H26Te
  21. The crystal structure of diaqua-bis(pyrazolo[1,5-a]-pyrimidine-3-carboxylato-κ2 N,O)zinc(II), C14H12N6O6Zn
  22. Crystal structure of N′,N‴-((1E,2E)-1,2-diphenylethane-1,2-diylidene)bis(4-methylbenzohydrazide) – water – methanol (1/1/1), C31H32N4O4
  23. Crystal structure of 3-((2,4-dichlorobenzyl)thio)-5-methyl-7-(trifluoromethyl)-[1,2,4]triazolo [4,3-c]pyrimidine, C14H9Cl2F3N4S
  24. Crystal structure of 3,5,6,7-tetramethoxy-3′,4′-methylenedioxy-flavone, C20H18O8
  25. Crystal structure of catena-poly[(5,5′-dimethyl-2,2′-bipyridine-κ 2 N,N′)-(μ 3-hydrogen-1,1′,1″-(1,3,5-triazine-2,4,6-triyl)tris(piperidine-4-carboxylato)- κ 5 O:O,O′:O″,O‴)-cadmium(II)], C33H40CdN8O6
  26. The crystal structure of 3,5-bis(propan-2-yl)-1H-pyrazol-4-amine, C9H17N3
  27. Crystal structure of [(1,4,7,10-tetraoxacyclododecane-κ 4 O,O′,O″, O‴)-tris(nitrato-κ 2 O,O′)gadolinium(III)], C8H16N3O13Gd
  28. The crystal structure of 2,2′-((pyridine-2,6-diylbis(methylene))bis(sulfanediyl))-bis(4,5-dihydro-1H-imidazol-3-ium) bromide, C13H19Br2N5S2
  29. Crystal structure of E-2-chloro-N′-(1-(5-chloro-2-hydroxyphenyl)propylidene)benzohydrazide, C16H14Cl2N2O2
  30. Crystal structure of 3-(adamantan-1-yl)-4-methyl-5-{[(4-nitrophenyl)methyl]sulfanyl}-4H-1,2,4-triazole, C20H24N4O2S
  31. The crystal structure of dimethanol-κ1O-(5,10,15,20-tetrakis(4-nitrophenyl)porphyrin-21,23-diido-κ4 O,O′,O″,O′″)manganese(III) trans-dicyanido-κ1C-bis(acetylacetonato-κ2 O,O′)ruthenium(III), C58H46N10O14RuMn
  32. The crystal structure of nitroxyl-κ N-{hydridotris(3-trifluoromethyl-5-methylpyrazolyl-1-yl-κN 3)borato}nickel(II), C15H13BF9N7NiO
  33. The crystal structure of [(2,2′-bipyridine-κ2 N,N)-bis(6-phenylpyridine-2-carboxylato- κ2 N,O)nickel(II)] monohydrate, C34H26N4O5Ni
  34. The crystal structure of 5-(2-fluoro-3-methoxyphenyl)-1-(2-fluoro-6-(trifluoromethyl)benzyl)-6-methylpyrimidine-2,4(1H,3H)-dione, C20H15F5N2O3
  35. The crystal structure of ethyl 2,3,5-trifluoro-4-(4-oxo-3,4-dihydropyridin-1(2H)-yl)benzoate, C14H12F3NO3
  36. [2,2′-{Ethane-1,2-diylbis[(azanylylidene)methanylylidene]}bis(3-bromo-2-hydroxyphenyl)]iron(III) nitrate, C20H12Br2CuN2O2
  37. The crystal structure of 1-(2-iodophenyl)-4-phenyl-1H-1,2,3-triazole, C14H10IN3
  38. Synthesis and crystal structure of 2-(2-oxo-2-(thiophen-2-yl)ethyl)-4H-chromen-4-one, C15H10O3S
  39. {6,6′-((1E,1′E)-((2,2-dimethylpropane-1,3-diyl)bis(azaneylylidene))bis(methaneylylidene))bis(2-bromo-4-chlorophenolate)-κ4N,N′,O,O′}copper(II), C19H16Br2Cl2CuN2O2
  40. The crystal structure of N′-[bis(2-hydroxyphenyl)methylidene]pyridine-4-carbohydrazide, C19H15N3O3
  41. Crystal structure of 2-chloro-6-formylphenolato-κ2O,O′-(6,6′-(((2,2-dimethylpropane-1,3-diyl)bis(azaneylylidene))bis(methaneylylidene))bis(2-chlorophenolato)κ4 N,N,O,O′)cobalt(III), C26H22Cl3CoN2O4
  42. The crystal structure of tetrakis(6-phenylpyridine-2-carboxylate-κ 2 N,O)-bis(μ2-6-phenylpyridine-2-carboxylate-κ 2 O:O′)-bis(μ2-6-phenylpyridine-2-carboxylate-κ 3N,O:O)tetralead(II) C48H32N4O8Pb2
  43. The crystal structure of 3,7-dihydroxy-9-methoxy-4a-methyl-4aH-benzo[c] chromene-2,6-dione —dichloromethane (1/1), C16H14Cl2O6
  44. The crystal structure of (Z)-6-(((5-chloro-2-hydroxyphenyl)amino)methylene)- 4-nitrocyclohexa, C13H9ClN2O4
  45. Crystal structure of dichlorido-tetra((E)-(RS)-1-(2,4-dichlorophenyl)-4,4-dimethyl-2-(1,2,4-triazol-1-yl)pent-1-en-3-ol-κ1 N)zinc(II), C60H68O4N12Cl10Zn
  46. The crystal structure of 4-(2-bromoethoxy)-2-hydroxybenzaldehyde, C9H9BrO3
  47. The crystal structure of 5-azido-1-methyl-4-nitroimidazole, C4H4O2N6
  48. Crystal structure of dibromido-tetra((E)-(RS)-1-(2,4-dichlorophenyl)-4,4-dimethyl-2-(1,2,4-triazol-1-yl)pent-1-en-3-ol-κ 1 N)zinc(II), C60H68O4N12Br2Cl8Zn
  49. Crystal structure of tetrasodium-bis(μ 2-oxido)-hexafluoro-didioxo-molybdenum(V), Na2(Mo2O4F6)
  50. Crystal structure of (E)-N′-(2-chloro-6-hydroxybenzylidene)-4- hydroxybenzohydrazide-water (1/1), C14H13Cl1N2O4
  51. Crystal structure of (E)-N-(4-morpholinophenyl)-1-(quinolin-2-yl)methanimine, C20H19N3O
  52. The crystal structure of catena-poly[(1,10-phenanthroline-κ2 N,N′)-(μ3-2-hydroxybenzene-1,3-dicarboxylato-κ5 O,O′:O″,O‴:O‴)cadmium(II)], C20H12CdN2O5
  53. The crystal structure of 2,6-di-tert-butyl-4-(4-(methylthio)benzylidene)cyclohexa-2,5-dien-1-one, C22H28OS
  54. La3.65Mg30Sb1.07 as a disordered derivative of Th2Ni17-type structure
  55. Crystal structure of (E)-N-(4-morpholinophenyl)-1-(quinoxalin-2-yl)methanimine, C19H18N4O
  56. The crystal structure of 2,2′-(1,2-phenylenebis(methylene))bis(1,3-dimethylisothiouronium) bromide, C14H24Br2N4S2
  57. Crystal structure of tetraaqua-bis[4-(1H-1,2,4-triazol-1-yl)benzoato-κ1 N]zinc(II), C18H20ZnN6O8
  58. Crystal structure of bis(tricarbonyl)-{(S)-(tert-butoxycarbonyl)(1-methoxy-1-oxo-3-sulfido-k2 S:S′-propan-2-yl)amido-k2N:N′}diiron(I) (Fe—Fe), C15H15Fe2NO10S
  59. Crystal structure of (E)-3-((4-chlorophenyl)thio)-4-hydroxypent-3-en-2-one, C11H11ClO2S
  60. The crystal structure of (E)-3′,6′-bis(diethylamino)-2-((5-(diethylamino)-2-hydroxybenzylidene)amino)spiro[isoindoline-1,9′-xanthen]-3-one, C39H45N5O3
  61. The crystal structure of 2-(4-methoxynaphthalen-1-yl)-4H-chromen-4-one, C20H14O3
  62. The crystal structure of trans-dichlorido-(ethylenediamine-κ 2 N,N′)-bis(triphenylphosphine-κ 1 P)ruthenium(II), C38H38Cl2N2P2Ru
  63. The double polymeric chain of catena-poly[(μ2-6-bromopyridine-3-carboxylato-κ2 O,O′) (6-bromopyridine-3-carboxylato-κ2 O,O′) (μ2-1,2-bis(4-pyridyl)ethylene-κ2 N:N′)cobalt(II)], C24H16CoBr2N4O4
  64. The crystal structure of tert-butyl 2-(4-(12-bromo [2.2]paracyclophanyl)carbamoyl)pyrrolidine-1-carboxylate, C26H31BrN2O3
  65. The crystal structure of (Z)-2-(2,3-dimethoxybenzylidene)naphtho[1,2-b]furan-3(2H)-one, C21H16O4
  66. Crystal structure of 2-hydroxy-1-tosylindolin-3-yl- 2-naphthoate, C26H21N1S1O5
  67. The crystal structure of 1-methyl-N-(1-methyl-1H-imidazole-2-carbonyl)-1H-imidazole-2-carboxamide, C10H11N5O2
  68. The crystal structure of (E)-2-((5-bromo-2-hydroxybenzylidene)amino)-3′,6′-bis(ethylamino)-2′, 7′-dimethylspiro[isoindoline-1,9′-xanthen]-3-one, C33H31BrN4O3
  69. The crystal structure of dimethanol-5,15-diphenylporphyrin-21,23-diido-κ4 N,Nʹ,Nʺ,Nʹʺ-manganese(III) trans-dicyanido-bis(acetylacetonato-κ2O,Oʹ)ruthenium(III), C46H42N6O6RuMn
  70. Crystal structure of 1,4,8,11-tetraazacyclotetradecane-1,8-diium bis(3,5-dicarboxybenzoate), C28H36N4O12
  71. Bifurcated halogen bonds in the crystal structure of 2,2′-bi(1,8-naphthyridine)—1,4-diiodotetrafluorobenzene (1/1), C22H10F4I2N4
Downloaded on 2.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2022-0362/html?lang=en
Scroll to top button