Startseite Mechanical and microstructural characterization of resistance spot welded dissimilar TWIP1000/TRIP800 joints
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Mechanical and microstructural characterization of resistance spot welded dissimilar TWIP1000/TRIP800 joints

  • Fatih Özen

    Dr. Fatih Özen, born in 1989, graduated as a Mechanical Engineer from Sakarya University. He received his MSc and PhD from the Sakarya University of Applied Science in 2020 on the subject of dissimilar welding of TWIP and martensitic steels. Between 2014 and 2020, he worked in Batman and Sakarya University as a Research Assistant. Since 2020, He works in Batman University as assistant professor. His main research interests are Microstructural characterizations of the metals, the mechanical behavior of materials, welding and machinability of the materials.

    ORCID logo EMAIL logo
Veröffentlicht/Copyright: 28. November 2023
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this work, resistance spot weldability of dissimilar TWIP1000/TRIP800 joint was investigated in terms of microstructural and mechanical characterization. The maximum tensile-shear load bearing capacity was 16,918 N in 6 kA welding current with 30 cycles of welding duration. Pull-out failure which was dominant and interfacial failure modes were obtained in tensile-shear tests. Although heat affected zone of the TRIP steel was totally transformed into tempered martensite, it showed better separation performance than TWIP steel. Heat affected zone of the TWIP steel was narrow, secondary phase formations and sudden grain coarsening have compromised the weakest point in the resistance spot welded joint.


Corresponding author: Fatih Özen, Department of Machine and Metals, Beşiri Organized Industrial Zone Vocational College, Batman University, Batman, 72060, Türkiye, E-mail:

About the author

Fatih Özen

Dr. Fatih Özen, born in 1989, graduated as a Mechanical Engineer from Sakarya University. He received his MSc and PhD from the Sakarya University of Applied Science in 2020 on the subject of dissimilar welding of TWIP and martensitic steels. Between 2014 and 2020, he worked in Batman and Sakarya University as a Research Assistant. Since 2020, He works in Batman University as assistant professor. His main research interests are Microstructural characterizations of the metals, the mechanical behavior of materials, welding and machinability of the materials.

Acknowledgments

The author would like to express gratitude to Sakarya University and Sakarya University of Applied Sciences for granting access to their laboratories. Additionally, the author extends thanks to ASAŞ Aluminium Company for providing access to material characterization devices.

  1. Research ethics: Not applicable.

  2. Author contributions: The author has accepted responsibility for the entire content of this manuscript and approved its submission.

  3. Competing interests: The author states no conflict of interest.

  4. Research funding: None declared.

  5. Data availability: The raw data can be obtained on request from the corresponding author.

References

[1] M. Pouranvari and S. P. H. Marashi, “Failure mode transition in AHSS resistance spot welds. Part I. Controlling factors,” Mater. Sci. Eng., A, vol. 528, pp. 8337–8343, 2011, https://doi.org/10.1016/j.msea.2011.08.017.Suche in Google Scholar

[2] V. Onar, “Mechanical and microstructural characterizations of resistance spot welded dissimilar TWIP/304L stainless steel,” Trans. Indian Inst. Met., vol. 75, pp. 1731–1739, 2022, https://doi.org/10.1007/s12666-021-02446-9.Suche in Google Scholar

[3] B. Figueredo, D. C. Ramachandran, A. Macwan, and E. Biro, “Failure behavior and mechanical properties in the resistance spot welding of quenched and partitioned (Q&P) steels,” Weld. World, vol. 65, pp. 2359–2369, 2021, https://doi.org/10.1007/s40194-021-01179-z.Suche in Google Scholar

[4] R. Sener, M. U. Yangaz, and M. Z. Gul, “Effects of injection strategy and combustion chamber modification on a single-cylinder diesel engine,” Fuel, vol. 266, pp. 1–15, 2020, https://doi.org/10.1016/j.fuel.2020.117122.Suche in Google Scholar

[5] M. Du, W. Wang, X. Zhang, and J. Niu, “Effect of process parameters on performances of TWIP steel/Al alloy dissimilar metals butt joints by laser offset welding,” Mater. Sci. Eng., A, vol. 853, p. 143746, 2022, https://doi.org/10.1016/j.msea.2022.143746.Suche in Google Scholar

[6] C. Rajarajan, P. Sivaraj, T. Sonar, S. Raja, and N. Mathiazhagan, “Nugget formation, microstructural features and strength of resistance spot welded cold-rolled dual-phase steel lap joints for automotive applications,” Mater. Test., vol. 64, pp. 1223–1233, 2022, https://doi.org/10.1515/mt-2021-2195.Suche in Google Scholar

[7] O. Çavuşoğlu, C. Yuce, and H. Aydın, “Mechanical characterization and microstructure of fiber laser welded TWIP980 steel depending on welding speed and focal distance,” Optik, vol. 274, pp. 1–9, 2023, https://doi.org/10.1016/j.ijleo.2023.170541.Suche in Google Scholar

[8] G. Casalino, A. Angelastro, P. Perulli, P. Posa, and P. R. Spena, “Fiber laser-MAG hybrid welding of DP/AISI 316 and TWIP/AISI 316 dissimilar weld,” Procedia CIRP, vol. 79, pp. 153–158, 2019, https://doi.org/10.1016/j.procir.2019.02.035.Suche in Google Scholar

[9] C. DiGiovanni, L. He, H. Pan, N. Y. Zhou, and E. Biro, “Predicting liquid metal embrittlement severity in resistance spot welding using hot tensile testing data,” Weld. World, vol. 66, pp. 1705–1714, 2022, https://doi.org/10.1007/s40194-022-01320-6.Suche in Google Scholar

[10] K. Ding, Y. Wang, M. Lei, et al.., “Numerical and experimental investigations on the enhancement of the tensile shear strength for resistance spot welded TWIP steel,” J. Manuf. Process., vol. 76, pp. 365–378, 2022, https://doi.org/10.1016/j.jmapro.2022.02.031.Suche in Google Scholar

[11] G. Park, S. Jeong, H. Kang, and C. Lee, “Improvement of circumferential ductility by reducing discontinuities in a high-Mn TWIP steel weldment,” Mater. Charact., vol. 139, pp. 293–302, 2018, https://doi.org/10.1016/j.matchar.2018.03.009.Suche in Google Scholar

[12] V. García-García, I. Mejía, and F. Reyes-Calderón, “Quantitative metallographic characterization of welding microstructures in Ti-containing TWIP steel by means of image processing analysis,” Mater. Charact., vol. 147, pp. 1–10, 2019, https://doi.org/10.1016/j.matchar.2018.10.012.Suche in Google Scholar

[13] M. Elitas, M. Goktas, M. Acarer, and B. Demir, “Finite element modelling of the fatigue damage in an explosive welded Al-dual-phase steel,” Mater. Test., vol. 65, pp. 787–801, 2023, https://doi.org/10.1515/mt-2022-0447.Suche in Google Scholar

[14] H. Aydın, M. Tutar, and A. Bayram, “Strain effect on the microstructure, mechanical properties and fracture characteristics of a TWIP steel sheet,” Trans. Indian Inst. Met., vol. 71, pp. 1669–1680, 2018, https://doi.org/10.1007/s12666-018-1303-2.Suche in Google Scholar

[15] M. Bordone, A. Monsalve, and J. Perez Ipiña, “Fracture toughness of High-Manganese steels with TWIP/TRIP effects,” Eng. Fract. Mech. J., vol. 275, pp. 1–15, 2022, https://doi.org/10.1016/j.engfracmech.2022.108837.Suche in Google Scholar

[16] J. Sun, J. Li, P. Wang, and Z. Huang, “Hot deformation behavior, dynamic recrystallization and processing map of Fe–30Mn–10Al–1C low-density steel,” Trans. Indian Inst. Met., vol. 75, pp. 699–716, 2022, https://doi.org/10.1007/s12666-021-02462-9.Suche in Google Scholar

[17] Y. Gui, D. An, F. Han, X. Lu, G. Kang, and X. Zhang, “Multiple-mechanism and microstructure-based crystal plasticity modeling for cyclic shear deformation of TRIP steel,” Int. J. Mech. Sci., vol. 222, pp. 1–21, 2022, https://doi.org/10.1016/j.ijmecsci.2022.107269.Suche in Google Scholar

[18] V. García-García, I. Mejía, F. Reyes-Calderón, J. A. Benito, and J. M. Cabrera, “FE thermo-mechanical simulation of welding residual stresses and distortion in Ti-containing TWIP steel through GTAW process,” J. Manuf. Process., vol. 59, pp. 801–815, 2020, https://doi.org/10.1016/j.jmapro.2020.09.042.Suche in Google Scholar

[19] T. Dieffenbach, K. Treutler, and V. Wesling, “High-speed tensile tests on high-manganese steel at low temperatures,” Mater. Test., vol. 65, pp. 124–133, 2023, https://doi.org/10.1515/mt-2022-0245.Suche in Google Scholar

[20] B. Wittig, M. Zinke, S. Jüttner, and D. Keil, “A new constitution diagram for dissimilar metal welds of high-manganese steels,” Weld. World, vol. 63, pp. 491–499, 2019, https://doi.org/10.1007/s40194-018-0668-5.Suche in Google Scholar

[21] Y. Akinay and F. Hayat, “Effect of Ni on the mechanical behavior of a high-Mn austenitic TWIP steel,” Mater. Test., vol. 58, pp. 413–417, 2016, https://doi.org/10.3139/120.110879.Suche in Google Scholar

[22] R. Singh, S. Sharma, and S. K. Vajpai, “Effect of reversible cyclic plastic deformation and thermal treatment on the microstructure and mechanical properties of SS304L steel,” Trans. Indian Inst. Met., vol. 73, pp. 1227–1237, 2020, https://doi.org/10.1007/s12666-020-01971-3.Suche in Google Scholar

[23] M. H. Razmpoosh, M. Shamanian, and M. Esmailzadeh, “The microstructural evolution and mechanical properties of resistance spot welded Fe-31Mn-3Al-3Si TWIP steel,” Mater. Des., vol. 67, pp. 571–576, 2015, https://doi.org/10.1016/j.matdes.2014.10.090.Suche in Google Scholar

[24] D. T. Pierce, J. T. Benzing, J. A. Jiménez, et al.., “Materialia the influence of temperature on the strain-hardening behavior of Fe-22/25/28Mn-3Al-3Si TRIP/TWIP steels,” Materialia, vol. 22, pp. 1–13, 2022. https://doi.org/10.1016/j.mtla.2022.101425.Suche in Google Scholar

[25] M. T. Tzini, J. S. Aristeidakis, P. I. Christodoulou, A. T. Kermanidis, G. N. Haidemenopoulos, and D. Krizan, “Multi-phase field modeling in TRIP steels: distributed vs average stability and strain-induced transformation of retained austenite,” Mater. Sci. Eng., A, vol. 833, pp. 1–12, 2022, https://doi.org/10.1016/j.msea.2021.142341.Suche in Google Scholar

[26] S. Wiewiorowska and Z. Muskalski, “Effect of the die approach zone shape on the transition of retained austenite and the mechanical properties of TRIP steel wires,” Mater. Test., vol. 58, pp. 302–305, 2016, https://doi.org/10.3139/120.110852.Suche in Google Scholar

[27] B. Karaoğlu and R. Kaçar, “Effect of heat treatment on the properties of plasma arc welded TRIP800 steel,” Mater. Test., vol. 64, pp. 1636–1644, 2022, https://doi.org/10.1515/mt-2022-0110.Suche in Google Scholar

[28] V. García-García, “Microstructural and mechanical analysis of double pass dissimilar welds of twinning induced plasticity steel to austenitic/duplex stainless steels,” Int. J. Pres. Ves. Pip., vol. 198, p. 104665, 2022, https://doi.org/10.1016/j.ijpvp.2022.104665.Suche in Google Scholar

[29] D. Han, Y. Xu, J. Zhang, F. Peng, and W. Sun, “Relationship between crystallographic orientation, microstructure characteristic and mechanical properties in cold-rolled 3.5Mn TRIP steel,” Mater. Sci. Eng., A, vol. 821, pp. 1–13, 2021, https://doi.org/10.1016/j.msea.2021.141625.Suche in Google Scholar

[30] J. T. Lloyd, D. J. Magagnosc, C. S. Meredith, K. R. Limmer, and D. M. Field, “Improved dynamic strength of TRIP steel via pre-straining,” Scr. Mater., vol. 220, pp. 1–5, 2022, https://doi.org/10.1016/j.scriptamat.2022.114941.Suche in Google Scholar

[31] S. Şahin, F. Hayat, and O. C. Çölgeçen, “The effect of welding current on nugget geometry, microstructure and mechanical properties of TWIP steels in resistance spot welding,” Weld. World, vol. 65, pp. 921–935, 2021, https://doi.org/10.1007/s40194-021-01083-6.Suche in Google Scholar

[32] M. H. Razmpoosh, E. Biro, F. Goodwin, and Y. Zhou, “Dynamic tensile behavior of fiber laser welds of medium manganese transformation-induced plasticity steel,” Metall. Mater. Trans. A, vol. 50, pp. 3578–3588, 2019, https://doi.org/10.1007/s11661-019-05261-6.Suche in Google Scholar

[33] F. Özen and S. Aslanlar, “Mechanical and microstructural evaluation of resistance spot welded dissimilar TWIP/martensitic steel joints,” Int. J. Adv. Des. Manuf. Technol., vol. 113, pp. 3473–3489, 2021, https://doi.org/10.1007/s00170-021-06848-3.Suche in Google Scholar

[34] L. Halbauer, A. Buchwalder, R. Zenker, and H. Biermann, “The influence of dilution on dissimilar weld joints with high-alloy TRIP/TWIP steels,” Weld. World, vol. 60, pp. 645–652, 2016. https://doi.org/10.1007/s40194-016-0324-x.Suche in Google Scholar

[35] C. DiGiovanni and E. Biro, “A review of current LME test methods and suggestions for developing a standardized test procedure,” Weld. World, vol. 65, pp. 865–884, 2021, https://doi.org/10.1007/s40194-020-01050-7.Suche in Google Scholar

[36] A. Angelastro, G. Casalino, P. Perulli, and P. R. Spena, “Weldability of TWIP and DP steel dissimilar joint by laser arc hybrid welding with austenitic filler,” Procedia CIRP, vol. 67, pp. 607–611, 2018, https://doi.org/10.1016/j.procir.2018.05.001.Suche in Google Scholar

[37] R. Laubstein, L. Halbauer, S. Martin, et al.., “Quality of dissimilar welded particle-reinforced TRIP/TWIP steels generated by electron beam braze-welding,” Weld. World, vol. 63, pp. 1655–1667, 2019, https://doi.org/10.1007/s40194-019-00780-7.Suche in Google Scholar

[38] X. Li, W. Liu, H. Liu, Z. Zhang, and P. Bao, “Microstructure and thermal cracking susceptibility of dissimilar resistance spot welded austenitic and mild steels,” Weld. World, vol. 67, pp. 417–423, 2023, https://doi.org/10.1007/s40194-022-01440-z.Suche in Google Scholar

[39] S. Vignier, E. Biro, and M. Hervé, “Predicting the hardness profile across resistance spot welds in martensitic steels,” Weld. World, vol. 58, pp. 297–305, 2014, https://doi.org/10.1007/s40194-014-0116-0.Suche in Google Scholar

[40] D. V Prosvirnin, M. S. Larionov, S. V Pivovarchik, and A. G. Kolmakov, “Structural features and strength behavior of TRIP/TWIP steels,” Inorg. Mater.: Appl. Res., vol. 12, pp. 1148–1156, 2021. https://doi.org/10.1134/S2075113321050324.Suche in Google Scholar

[41] Y. Chen, X. M. Zhang, Z. H. Cai, Y. Q. Wang, and H. Ding, “Effect of microalloying with V and Ti on the microstructure and properties of electron beam welded thick high-Mn TWIP steel plates,” Mater. Sci. Eng., A, vol. 811, pp. 1–11, 2021, https://doi.org/10.1016/j.msea.2021.141062.Suche in Google Scholar

[42] B. Wittig, M. Zinke, S. Jüttner, and D. Keil, “Experimental simulation of dissimilar weld metal of high manganese steels by arc melting technique,” Weld. World, vol. 61, pp. 249–256, 2017, https://doi.org/10.1007/s40194-017-0427-z.Suche in Google Scholar

[43] H. Vahiddastjerdi, A. Rezaeian, M. R. Toroghinejad, G. Dini, and E. Ghassemali, “Optimizing pulsed Nd: YAG laser welding of high-Mn TWIP steel using response surface methodology technique,” Opt. Laser Technol., vol. 120, pp. 1–11, 2019, https://doi.org/10.1016/j.optlastec.2019.105721.Suche in Google Scholar

[44] T. C. A. Colombo, R. R. Rego, J. Otubo, and A. R. de Faria, “Mechanical reliability of TWIP steel spot weldings,” J. Mater. Process. Technol., vol. 266, pp. 662–674, 2019, https://doi.org/10.1016/j.jmatprotec.2018.11.021.Suche in Google Scholar

[45] A. Ebrahimpour, A. Mostafapour, and M. R. Nakhaei, “Application of response surface methodology for weld strength prediction in FSSWed TRIP steel joints,” Weld. World, vol. 65, pp. 183–198, 2021, https://doi.org/10.1007/s40194-020-01008-9.Suche in Google Scholar

Published Online: 2023-11-28
Published in Print: 2024-01-29

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 14.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/mt-2023-0148/html
Button zum nach oben scrollen