Startseite Accuracy of tumor perfusion assessment in Rat C6 gliomas model with USPIO
Artikel Open Access

Accuracy of tumor perfusion assessment in Rat C6 gliomas model with USPIO

  • Xiang-Rong Yu , Bo-Ling Cao , Wei Li , Ye Tian und Zhong-Li Du EMAIL logo
Veröffentlicht/Copyright: 7. November 2019

Abstract

Detailed characterization of the permeability and vascular volume of brain tumor vasculature can provide essential insights into tumor physiology. In this study, we evaluated the consistency of measurements in tumor blood volume and examined the feasibility of using ultrasmall superparamagnetic iron oxide (USPIO) versus gadolinium-diethylene triamine pentaacetic acid (Gd-DTPA) as contrast agents for MR perfusion imaging of brain gliomas in C6 Rats. Eighteen rats were intracerebrally implanted with C6 glioma cells, randomly divided into two groups and examined by 3.0T perfusion MR imaging with Gd-DTPA and USPIO. Tumor relative cerebral blood volume (rCBV) and relative maximum signal reduction ratio (rSRRmax) were created based on analysis of MR perfusion images. The mean values for rCBV were 2.09 and 1.57 in the USPIO and the Gd-DTPA groups, respectively, and rSRRmax values were 1.92 and 1.02 in the USPIO and the Gd-DTPA groups, respectively, showing signifi cant differences in both rCBV and rSRRmax between the USPIO and the Gd-DTPA groups (P < 0.05). The results showed that early vascular leakage occurred with gadolinium rather than USPIO in perfusion assessment, revealing that USPIO was useful in perfusion MR imaging for the assessment of tumor vasculature.

1 Introduction

Angiogenesis is an essential feature of brain tumors and has served as a target for multiple novel therapies. Currently, conventional T2-weighted and contrast enhanced T1-weighted magnetic resonance (MR) imaging sequences are reliable for evaluating tumor angiogenesis and monitoring antiangiogenic therapies. An alternative technique is to measure cerebral blood volume (CBV) with dynamic susceptibility-weighted contrast enhanced perfusion MR imaging. Previous studies show that MR perfusion imaging is a valuable adjunct to conventional imaging, and perfusion imaging correlates with tumor progression [1, 2, 3, 4]. The estimation of relative CBV (rCBV) with this method relies on the assumption of an intact blood brain-barrier (BBB) which might be affected by glioma. Disruption of the BBB can increase the permeability of vasculature, leading to leakage of low molecular weight contrast gadolinium diethylene triamine pentaacetic acid (Gd-DTPA) from the vascular system into the interstitial space. The leakage of Gd -DTPA can result in changes in interstitial signal intensity, which confounds changes in intravascular susceptibility-induced signal intensity during passage of the contrast agent through the vasculature [5] and leads to the underestimation of CBV [6, 7], especially in lesions with highly permeable vasculature [8, 9, 10].

To improve the performance of perfusion MR imaging in diagnosis, in this work a blood pool contrast agent, ultrasmall superparamagnetic iron oxide particles (USPIO), was used to characterize the tu mor vasculature and evaluate the consistency of tumor blood volume measurements in C6 rat glioma models using perfusion MR imaging in comparison with Gd-DTPA [11, 12, 13]. The USPIO contrast agent was examined in the intravascularature for a prolonged period of time and transverse water proton MR relaxation rate was tested, with T2 relaxivity of USPIO being up to 20 times of that of Gd-DTPA [13]. USPIO may be a reliable marker for blood volume estimation in le sions with BBB disruption.

2 Materials and methods

2.1 Animal Procedures

Adult male SD rats (275±25 g, n = 18) were purchased from Shanghai SLAC Lab Animal Ltd. (Shanghai, China) and maintained under standard conditions. The animal experiments were conducted under the regulation of the ethics committee of Jinan University and we have complied strictly with all the rules associated with animal study. C6 cells were cultured in Dulbecco’s modified Eagle’s medium (DMEM; Gibco, Gaithersburg, MD) with 5% fetal calf serum, 1% penicillin-streptomycin and 1% glutamine in a humidified incubator at 37°C with 5% CO2. For implantation, nearly confluent C6 glioma cells were harvested and resuspended in DMEM at the density of 1×106 cells in 10μL of culture medium. Cells were inoculated into the right striatum as follows. Rats were anesthetized with 10% Chloral Hydrate (3.5 mL/ kg) via intraperitoneal injection (i.p.), and immobilized in a stereotactic head set with ear bars and a teeth bar. The skull was exposed by a 2 cm midline incision, and a burr hole was created on the right side 1 mm anterior and 3 mm lateral to the bregma. 10 μL of DMEM containing 1×106 C6 cells was injected from the skull surface into the frontal lobe at a depth of 5 mm over a period of 5 minutes. The needle was kept in place for 5 minutes after injection to prevent backflow prior to removal. After surgery, the burr hole was filled with bone wax and the scalp was sutured.

2.2 MRI Acquisition

After tumor inoculation all rats (n = 18) were randomly divided into two groups (9 rats each) and characterized with MRI at day 12. The effective sample size in each group was calculated based on the resource equation method proposed by Festing et al [14, 15] and followed the guidelines proposed by Charan and Kantharia [16]. Rats were anesthetized with Chloral Hydrate (3.5 mL/kg) via intraperitoneal injection. After 5 minutes the rats were catheterized in the tail vein and placed in a clinical 3.0-T MR system (Signa HDX, GE Medical System, LLC, USA) with a 3-inch-diameter 4-element phased array coil. During imaging, rats were wrapped by a warm water blanket under saturated oxygen and heart rate was monitored simultaneously. Before USPIO injection, dextran coated 4-6 nm iron oxide (20-30 nm in diameter, Sinerem, Guerbet Laboratories, Aulnay-Sous-Bois, France), was diluted in 0.9% NaCl. The two groups were injected with USPIO and Gd-DTPA (Magnevist Schering, Berlin, Germany) at 0.2 mM/kg via tail vein, respectively, which was conducted within 1s of the fourth imaging occurring, then followed immediately by a 0.3 mL of saline flush at a rate of 1 mL/ min. Coronal imaging sequences included: spin-echo T1 weighted imaging and fast spin-echo T2 weighted imaging. Dynamic susceptibility-weighted contrast enhanced perfusion MR images were acquired by using a gradient-echo pulse sequence. After rapid bolus administration of contrast agent was performed via the tail vein, we performed three consecutive DSC perfusion MR to acquire 45 volumes within ~3 minutes. Then conventional contrast enhanced T1-weighted imaging was conducted immediately in the Gd-DTPA group, and fast spin-echo T2 weighted imaging was performed 12 hours later in the USPIO group.

2.3 Histological analysis

After MR imaging, rats were sacrificed with CO2, followed by heart perfusion with saline and 4% paraformaldehyde. Brains with glioma legions were cut and the glioma volume was calculated by the formula: V= 1/2×a×b2, where a and b represented the maximum and minimum diameters of glioma, respectively. Then glioma-bearing brains were embedded in optimal cutting temperature compound and frozen while fresh. Serial 5-μm thick sections of glioma-bearing brains were obtained and stained with hematoxylin and eosin (HE) and Prussian blue, respectively, according to standard clinical pathology protocols. Immunohistochemical assays of C6 glioma preparations were performed with primary rabbit polyclonal antibody to glial fibrillary acidic protein (GFAP; dilution, 1:500; Abcam USA). Tumoral vascular cells were stained with primary rabbit polyclone CD 31 (dilution, 1:100; Abcam USA) at 4°C overnight, and further stained with Alexa Fluor 647-conjugated goat anti-rabbit secondary antibody (dilution, 1:100; Jackson USA) for 1 h at room temperature. Cell nuclei were stained by Hoechst 33342 (1 mg/ ml, Nantong China) at room temperature for 10 min. The number of tumoral vessels was counted in five high power field areas. Transmission electron microscopy (Philip CM-120, Eindhoven Netherlands) was used to observe the ultrastructural changes of the tight junctions and pinocytotic vesicles in glioma microvascular endothelial cells.

2.4 Image Processing

All data were acquired and processed by a SPARC (Sun Micro-systems) workstation. The intensity-time curve and raw data were obtained based on signal-time curve from perfusion MR imaging. Maximum signal reduction ratio (SRRmax) was calculated as below: SRRmax=(SIpre-SImin) /SIpre×100%, where SIpre is the mean signal intensity prior to injection of contrast agent and SImin is the minimal signal intensity during the process of post-contrast perfusion. Changes in the SRRmax were calculated in the different regions of interests (ROIs) for each group. A fully automated deconvolution analysis was performed to create parametric images of CBV. To quantify changes of CBV and SRRmax in tumor and normal tissues, color-coded CBV maps were created on a voxel-wise basis and projected onto the T2- weighted images, which provided better visualization of tumor boundaries. To minimize potential measurement biases, the images were randomly provided and necrotic areas were excluded. Two radiologists drew a ROI by consensus with the highest CBV areas on the perfusion maps within the three portions of the tumor lesion, and the averaged ROI values were obtained as the mean value of the tumor. Furthermore, the radiologists evaluated the contralateral normal tissue in a normal-appearing color-coded CBV map with the same size ROI (2 mm minimum diameter; circular ROI at least 4 mm2). Relative ratios of CBV and SRRmax in the tumor against those in the contralateral brain tissue were calculated.

2.5 Statistical Analysis

All continuous variables were expressed as means±stand-ard deviations. The size differences of the glioma between the USPIO group and the Gd-DTPA group were examined using the independent-samples t-test. The differences in CBV and SSRmax in the tumor lesion and normal brain tissue were examined by paired-samples t-test. The differences in relative ratios of CBV and SRRmax between the USPIO group and the Gd-DTPA group were examined using the independent-samples t-test. All statistical analyses were performed with SPSS software (SPSS for

Windows, version 16.0; Chicago, IL). A P value less than 0.05 was considered as statistically significant.

3 Results

3.1 Imaging manifestation

At 12 days after tumor inoculation, the glioma volumes were calculated to be 58.52 ± 6.34 mm3 and 57.45 ± 6.62 mm3 for the USPIO and the Gd-DTPA groups, respectively, indicating no significant differences in tumor sizes between groups. The tumors showed as hypointense on T1 weighted images (Fig 1A) while showing as hyperintense on T2 weighted images (Fig 2A). Necrosis was seen on MR images in all the rats. After administration of Gd-DTPA and USPIO, tumors were easily identified. Every tumor model displayed a distinctive pattern of vascular morphology and enhancement after administration of contrast agents. With Gd-DTPA administration, all tumors were hyperintense on T1 weighted images, indicating extravasation of Gd-DTPA (Fig 1B). With administration of USPIO, all tumors presented as hypointense on T2 weighted images. The negative enhancing effect presented first at the border of the tumors, and then infiltrated toward the center gradually. Tumor microvessels were readily identified as hypointense serpiginous structures within the tumor (Fig 2B).

Figure 1 C6 glioma assessed with Gd-DTPA. A: T1-weighted image showed a hypointense tumor without distinct border (arrow). B: After administration of Gd-DTPA, A heterogeneous enhancement tumor with necrosis was noted (arrow). C: The mean of highest CBV areas(arrow) was 21.35 with administration of Gd-DTPA in the tumor. D: TEM image showed significant increase of the pinocytotic vesicles and opening tight junctions (arrow).
Figure 1

C6 glioma assessed with Gd-DTPA. A: T1-weighted image showed a hypointense tumor without distinct border (arrow). B: After administration of Gd-DTPA, A heterogeneous enhancement tumor with necrosis was noted (arrow). C: The mean of highest CBV areas(arrow) was 21.35 with administration of Gd-DTPA in the tumor. D: TEM image showed significant increase of the pinocytotic vesicles and opening tight junctions (arrow).

Figure 2 C6 glioma assessed with USPIO. A: T2-weighted image showed a hyperintense tumor without distinct border (arrow). B: After administration of USPIO, the T2 signal decreased in the periphery of the tumor. Tumor microvessels were more readily identified as hypointense serpiginous structures within the tumor (arrow). C: The highest CBV areas were prominent on color-coded CBV maps. D: Sections were stained with Prussian blue after administration of USPIO, showing that iron particles located in capillaries in the border zone of the necrotic lesion.
Figure 2

C6 glioma assessed with USPIO. A: T2-weighted image showed a hyperintense tumor without distinct border (arrow). B: After administration of USPIO, the T2 signal decreased in the periphery of the tumor. Tumor microvessels were more readily identified as hypointense serpiginous structures within the tumor (arrow). C: The highest CBV areas were prominent on color-coded CBV maps. D: Sections were stained with Prussian blue after administration of USPIO, showing that iron particles located in capillaries in the border zone of the necrotic lesion.

3.2 Perfusion MR imaging findings and histomorphometry

CBV and SSRmax values of tumor and contralateral tissue from the USPIO and Gd-DTPA groups are presented in Table 1. Average CBV values obtained in tumors were all larger than those obtained in contralateral tissue (P < 0.01) (Figs 1C, 2C). Differences of SSRmax between tumor and contralateral tissues were significant (P < 0.01).

The relative ratios of CBV(rCBV) in the USPIO group varied from 1.78 to 2.58 with a mean of 2.09±0.23 (SD), whereas in the Gd-DTPA group ratios varied from 1.22 to 1.86 with a mean of 1.57±0.19. The relative ratios of SSRmax (rSSRmax) in the USPIO group varied from 1.33 to 2.32 with a mean of 1.92±0.37, while in the Gd-DTPA group ratios varied from 0.81 to 1.42 with a mean of 1.02±0.27. A significant difference existed in rCBV and rSSRmax between the USPIO and the Gd-DTPA groups based on the two-tailed independent-samples T test (P < 0.05).

All tumors exhibited the invasive growth of gliomas and significant increases of the pinocytotic vesicles and opening tight junctions (Fig 1D). Prussian blue staining was carried out to further verify the accumulation of the USPIO in turmor legions. As shown in Fig 2C, blue spots of USPIO were observed in tumor region. Immunohisto-chemistry revealed that numerous cells expressed GFAP presented as brown granules, suggesting the presence of glioma (Fig 3A). Vascularature was immunofluorescence-stained with CD 31 antibody, showing 45.5±6.2%

Table 1

Comparison of perfusion metrics obtained for rat models with different imaging methods (n=9)

Metrics Method Tumor region Normal tissue Relative ratio
CBV USPIO 33.53±2.85 17.28±1.51 2.09±0.23
Gd-DTPA 23.35±2.14 17.47±1.64 1.57±0.19
SRRmax USPIO 28.99±3.23 15.07±2. 03 1.92±0.37
Gd-DTPA 17.90±2.59 15.30±1.79 1.02±0.27

neovascularature in tumor lesions, which was significantly higher than that in normal tissue (Figs 3B-D).

Figure 3 C6 glioma assessed with histological analysis. A: Numerous cells expressed GFAP. B: Blue fluorescence showed the cell nuclei. C: Red fluorescence showed vascular. D: Merged imaging depicted the colocalization of nuclei and vascular in tumor area. In addition, 35.5±6.2% vascular (red) in tumor lesion, which was significantly higher than that in normal tissue.
Figure 3

C6 glioma assessed with histological analysis. A: Numerous cells expressed GFAP. B: Blue fluorescence showed the cell nuclei. C: Red fluorescence showed vascular. D: Merged imaging depicted the colocalization of nuclei and vascular in tumor area. In addition, 35.5±6.2% vascular (red) in tumor lesion, which was significantly higher than that in normal tissue.

4 Discussion

Tumor vascularity is closely associated and might be mutually promoted in glioma growth. In our study, the immunofluorescence staining of tumor vascularature showed 45.5±6.2% neovascularature in tumor lesions, which was significantly higher than that in normal tissue. Noninvasive evaluation of the permeability and vascular volume of tumor vasculature can provide essential insights into tumor physiology, which is the prerequisite to investigate and evaluate tumor responses to antiangiogenic therapies. Evidence showed that MR perfusion imaging was a sensitive marker for the tumor vascularity [17]. However, normal brain tissues are protected by a functional blood brain barrier (BBB) but glioma regions are characterized by an impaired BBB. Blood volume estimation would be more reliable in lesions with disrupted BBB when a blood pool contrast agent is used to minimize extravasation artifacts. Traditional MRI techniques rely on gadolinium (Gd) to demonstrate defects in the BBB caused by tumors because Gd can rapidly cross disrupted BBB into extracellular space and be cleared from the blood circulation due to its small molecular size [10,18]. Unlike Gd, USPIO initially remains in the intravascular space after administration due to its large size, potentially allowing more accurate perfusion imaging. Here, we adopted dynamic susceptibility-weighted contrast enhanced perfusion MR imaging, one of the most common tumor vasculature assessment techniques, to evaluate the efficacy of Gd-DTPA versus USPIO in C6 rat glioma models.

Measurements of rCBV closely correlate with angiographic and histologic markers of tumor vascularity, in which a threshold value greater than 1.75 in gliomas has been widely used in previous studies and clinical practice [4,10,19]. Our results showed that five rats with diffuse infiltrative gliomas showed low rCBV (≤ 1.75) with Gd-DTPA while all nine rats showed high rCBV (>1.75) with USPIO, showing significant difference of rCBVs between Gd-DTPA and USPIO. Gahramanov et al [10] reported similar results by performing three consecutive perfusion MR imaging acquisitions in U87MG rat models, which were performed without preload, with single-dose preload, and with double-dose preload. Perfusion MR imaging with gadodiamide and without preload showed low rCBV (≤ 1.75) in 9 of 13 tumors and estimated rCBV increases progressively with both single- and double-dose preloads (P <.001). Conversely, rCBVs obtained with ferumoxytol were high (>1.75) and remained constant in all three acquisitions. This finding is consistent with previous clinical imaging results by Hu et al [20] who performed six consecutive perfusion MR image acquisitions with gadolinium-based contrast agent and correlated rCBVs with histopathologic findings in patients with high-grade glioma after chemoradiotherapy. Their results showed rCBV is underestimated in biopsy verified tumors and is dependent on preload dose of contrast agent. All of the results indicated that tumor rCBV based on gadolinium-based contrast agent can be underestimated without preload and is dose-dependent with preload correction. Conversely, USPIO provides consistent assessment of tumor rCBV, which provides an objective comparison of vascular volumes among different tumors and allows performance of longitudinal studies to assess various factors, such as treatment efficacy.

In addition to vascular volume measurements, we have derived an image metric that reflects the permeability and extracellular volume of brain tumor vasculature modeled from perfusion MR imaging, showing that this metric (SRRmax) can be done by visually evaluating the changes in signal intensity. Specifically, the USPIO group with a higher relative SSRmax is more likely to have a lower vascular leakage than the Gd-DTPA group in our study. In the current study, significant increases of the pinocytotic vesicles and opening tight junctions in glioma microvascular endothelial cells is observed in the TEM results. Previous studies showed an increase of vascular permeability, accompanied with the increase of the pinocytotic vesicles and opening tight junctions [21, 22, 23]. The healthy capillary with an intact BBB is impermeable to the contrast agent and remains intravascularly, due to which the signal intensity should return to around baseline value. A diseased capillary with a disrupted BBB might be permeable to the contrast agent, leading to the accumulation of contrast agent outside the vessel. The changes of SRRmax were recognized as an approximation of vasculature permeability to the contrast agent [19]. The leakage of contrast agent out of the vessel into the extravascular space of the tissue can cause the progressive decrease of SRRmax. In addition, leakage of Gd-DTPA from the tumor is not restricted to the tumor interstitium but can extend into the surrounding normal tissue, which probably precludes an accurate estimation of the tumor edges. Thus, owing to the large size of the iron nanoparticles and a long half-life, the inability of USPIO to cross the disrupted BBB in the short term provides an attractive alternative to Gd-DTPA for blood volume measurements [18].

There were some limitations in our study that must be considered. Perfusion MR imaging provides a measurement of tumor blood volume as a ratio compared with normal-appearing parenchyma rather than an absolute measurement of tumor vasculature as a percentage of tumor volume. There is, however, evidence that measurements of rCBV correlate closely with angiographic and histologic markers of tumor vascularity [17,21]. In our study, we only compared USPIO with Gd-DTPA in terms of vasculature and permeability of tumors. In our future study, evaluation of the efficacy of antiangiogenic therapy with USPIO versus Gd-DTPA by perfusion MR imaging will be evaluated. Furthermore, it will be instructive to see if rCBV and rSRRmax can give predictable responses to the therapies, which needs clarifying with future study. Finally, mathematical correction of contrast agent extravasation is not applied during postprocessing. It is well known that rCBV is underestimated with Gd-DTPA, and a number of mathematical algorithms have been proposed to minimize artifacts from contrast agent extravasation. These methods, however, require sophisticated postprocessing and suffer from a lack of consistency, according to Paulson et al [5] who compared five different mathematical correction algorithms in the same patient and demonstrated dependence of variability in tumor rCBV on the choice of methods of analysis.

5 Conclusion

We have characterized in detail the tumor vasculature by imaging vascular leakage and vascular volume. Our results show that USPIO has advantages in the assessment of tumor perfusion due to its low leakage rate, demonstrating that USPIO is a highly attractive alternative to Gd-DTPA in MR perfusion imaging.


Tel.: +86 13536586162

Acknowledgements

The authors gratefully acknowledge the financial support from the National Natural Science Foundation of China (81701684), the Science and Technical Committee of Guangdong (2017A020215090) and the Health and Family Planning Commission of Guangdong (A2017299)

  1. Conflicts of interest

    The authors declare that they have no conflicts of interest.

References

[1] Law M, Yang S, Wang H, et al. Glioma grading: sensitivity, specificity, and predictive values of perfusion MR imaging and proton MR spectroscopic imaging compared with conventional MR imaging. AJNR Am J Neuroradiol. 2003;24:1989-1998Suche in Google Scholar

[2] Cha S. Perfusion MR imaging of brain tumors. Top Magn Reson Imaging. 2004;15:279-28910.1097/00002142-200410000-00002Suche in Google Scholar PubMed

[3] Cha S, Tihan T, Crawford F, et al. Differentiation of low-grade oligodendrogliomas from low-grade astrocytomas by using quantitative blood-volume measurements derived from dynamic susceptibility contrast-enhanced MR imaging. AJNR Am J Neuroradiol. 2005;26:266-273Suche in Google Scholar

[4] Law M, Oh S, Babb JS, et al. Low-grade gliomas: dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging--prediction of patient clinical response. Radiology. 2006;238:658-66710.1148/radiol.2382042180Suche in Google Scholar PubMed

[5] Paulson ES, Schmainda KM. Comparison of dynamic susceptibility-weighted contrast-enhanced MR methods: recommendations for measuring relative cerebral blood volume in brain tumors. Radiology. 2008;249:601-61310.1148/radiol.2492071659Suche in Google Scholar PubMed PubMed Central

[6] Schmainda KM, Rand SD, Joseph AM, et al. Characterization of a first-pass gradient-echo spin-echo method to predict brain tumor grade and angiogenesis. AJNR Am J Neuroradiol. 2004;25:1524-1532Suche in Google Scholar

[7] Quarles CC, Ward BD, Schmainda KM. Improving the reliability of obtaining tumor hemodynamic parameters in the presence of contrast agent extravasation. Magn Reson Med. 2005;53:1307-131610.1002/mrm.20497Suche in Google Scholar PubMed

[8] Hoefnagels FW, Lagerwaard FJ, Sanchez E, et al. Radiological progression of cerebral metastases after radiosurgery: assessment of perfusion MRI for differentiating between necrosis and recurrence. J Neurol. 2009;256:878-88710.1007/s00415-009-5034-5Suche in Google Scholar PubMed PubMed Central

[9] Hu LS, Baxter LC, Smith KA, et al. Relative cerebral blood volume values to differentiate high-grade glioma recurrence from posttreatment radiation effect: direct correlation between image-guided tissue histopathology and localized dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging measurements. AJNR Am J Neuroradiol. 2009;30:552-810.3174/ajnr.A1377Suche in Google Scholar PubMed PubMed Central

[10] Gahramanov S, Raslan AM, Muldoon LL, et al. Potential for differentiation of pseudoprogression from true tumor progression with dynamic susceptibility-weighted contrast-enhanced magnetic resonance imaging using ferumoxytol vs. gadoteridol: a pilot study. Int J Radiat Oncol Biol Phys. 2011;79:514-52310.1016/j.ijrobp.2009.10.072Suche in Google Scholar PubMed PubMed Central

[11] Bremer C, Mustafa M, Bogdanov A Jr, Ntziachristos V, Petrovsky A, Weissleder R. Steady-state blood volume measurements in experimental tumors with different angiogenic burdens a study in mice. Radiology. 2003;226:214-22010.1148/radiol.2261012140Suche in Google Scholar PubMed

[12] Leenders W, Küsters B, Pikkemaat J, et al. Vascular endothelial growth factor-A determines detectability of experimental melanoma brain metastasis in GD-DTPA-enhanced MRI. Int J Cancer. 2003;105:437-44310.1002/ijc.11102Suche in Google Scholar PubMed

[13] Gambarota G, van Laarhoven HW, Philippens M, et al. Assessment of absolute blood volume in carcinoma by USPIO contrast-enhanced MRI. Magn Reson Imaging. 2006;24:279-28610.1016/j.mri.2005.12.003Suche in Google Scholar PubMed

[14] Festing MF, Altman DG. Guidelines for the design and statistical analysis of experiments using laboratory animals. ILAR J. 2002;43:244-528.10.1093/ilar.43.4.244Suche in Google Scholar PubMed

[15] Festing MF. Design and statistical methods in studies using animal models of development. ILAR J. 2006;47:5-1410.1093/ilar.47.1.5Suche in Google Scholar PubMed

[16] Charan J, Kantharia ND. How to calculate sample size in animal studies? J Pharmacol Pharmacother. 2013;4:303-30610.4103/0976-500X.119726Suche in Google Scholar PubMed PubMed Central

[17] Sugahara T, Korogi Y, Kochi M, et al. Correlation of MR imaging-determined cerebral blood volume maps with histologic and angiographic determination of vascularity of gliomas. AJR Am J Roentgenol. 1998;171:1479-148610.2214/ajr.171.6.9843274Suche in Google Scholar PubMed

[18] Neuwelt EA, Várallyay CG, Manninger S, et al. The potential of ferumoxytol nanoparticle magnetic resonance imaging, perfusion, and angiography in central nervous system malignancy: a pilot study. Neurosurgery.2007;60:601-11; discussion 611-61210.1227/01.NEU.0000255350.71700.37Suche in Google Scholar PubMed

[19] Gahramanov S, Muldoon LL, Li X, Neuwelt EA. Improved perfusion MR imaging assessment of intracerebral tumor blood volume and antiangiogenic therapy efficacy in a rat model with ferumoxytol. Radiology. 2011;261:796-80410.1148/radiol.11103503Suche in Google Scholar PubMed PubMed Central

[20] Hu LS, Baxter LC, Pinnaduwage DS, et al. Optimized preload leakage-correction methods to improve the diagnostic accuracy of dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging in posttreatment gliomas. AJNR Am J Neuroradiol. 2010;31:40-4810.3174/ajnr.A1787Suche in Google Scholar PubMed PubMed Central

[21] Xia CY, Liu YH, Wang P, Xue YX. Low-frequency ultrasound irradiation increases blood-tumor barrier permeability by transcellular pathway in a rat glioma model. J Mol Neurosci. 2012;48:281-229010.1007/s12031-012-9770-0Suche in Google Scholar PubMed

[22] Yang ZH, Liu LB, Zhao LN, Liu YH, Xue YX. Permeability of the blood-tumor barrier is enhanced by combining vascular endothelial growthfactor with papaverine.J Neurosci Res. 2014;92:703-71310.1002/jnr.23348Suche in Google Scholar PubMed

[23] Danchaivijitr N, Waldman AD, Tozer DJ, et al. Low-grade gliomas: do changes in rCBV measurements at longitudinal perfusion-weighted MRimaging predict malignant transformation? Radiology. 2008;247:170-17810.1148/radiol.2471062089Suche in Google Scholar PubMed

Received: 2019-03-04
Accepted: 2019-08-17
Published Online: 2019-11-07

© 2019 Xiang-Rong Yu et al. published by De Gruyter

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Artikel in diesem Heft

  1. Research Article
  2. Prostate Cancer-Specific of DD3-driven oncolytic virus-harboring mK5 gene
  3. Case Report
  4. Pediatric acute paradoxical cerebral embolism with pulmonary embolism caused by extremely small patent foramen ovale
  5. Research Article
  6. Associations between ambient temperature and acute myocardial infarction
  7. Case Report
  8. Discontinuation of imatinib mesylate could improve renal impairment in chronic myeloid leukemia
  9. Research Article
  10. METTL3 promotes the proliferation and mobility of gastric cancer cells
  11. The C677T polymorphism of the methylenetetrahydrofolate reductase gene and susceptibility to late-onset Alzheimer’s disease
  12. microRNA-1236-3p regulates DDP resistance in lung cancer cells
  13. Review Article
  14. The link between thyroid autoimmunity, depression and bipolar disorder
  15. Research Article
  16. Effects of miR-107 on the Chemo-drug sensitivity of breast cancer cells
  17. Analysis of pH dose-dependent growth of sulfate-reducing bacteria
  18. Review Article
  19. Musculoskeletal clinical and imaging manifestations in inflammatory bowel diseases
  20. Research Article
  21. Regional hyperthermia combined with chemotherapy in advanced gastric cancer
  22. Analysis of hormone receptor status in primary and recurrent breast cancer via data mining pathology reports
  23. Morphological and isokinetic strength differences: bilateral and ipsilateral variation by different sport activity
  24. The reliability of adjusting stepped care based on FeNO monitoring for patients with chronic persistent asthma
  25. Comparison of the clinical outcomes of two physiological ischemic training methods in patients with coronary heart disease
  26. Analysis of ticagrelor’s cardio-protective effects on patients with ST-segment elevation acute coronary syndrome accompanied with diabetes
  27. Computed tomography findings in patients with Samter’s Triad: an observational study
  28. Case Report
  29. A spinal subdural hematoma induced by guidewire-based lumbar drainage in a patient with ruptured intracranial aneurysms
  30. Research Article
  31. High expression B3GAT3 is related with poor prognosis of liver cancer
  32. Effects of light touch on balance in patients with stroke
  33. Oncoprotein LAMTOR5 activates GLUT1 via upregulating NF-κB in liver cancer
  34. Effects of budesonide combined with noninvasive ventilation on PCT, sTREM-1, chest lung compliance, humoral immune function and quality of life in patients with AECOPD complicated with type II respiratory failure
  35. Prognostic significance of lymph node ratio in ovarian cancer
  36. Case Report
  37. Brainstem anaesthesia after retrobulbar block
  38. Review Article
  39. Treating infertility: current affairs of cross-border reproductive care
  40. Research Article
  41. Serum inflammatory cytokines comparison in gastric cancer therapy
  42. Behavioural and psychological symptoms in neurocognitive disorders: Specific patterns in dementia subtypes
  43. MRI and bone scintigraphy for breast cancer bone metastase: a meta-analysis
  44. Comparative study of back propagation artificial neural networks and logistic regression model in predicting poor prognosis after acute ischemic stroke
  45. Analysis of the factors affecting the prognosis of glioma patients
  46. Compare fuhrman nuclear and chromophobe tumor grade on chromophobe RCC
  47. Case Report
  48. Signet ring B cell lymphoma: A potential diagnostic pitfall
  49. Research Article
  50. Subparaneural injection in popliteal sciatic nerve blocks evaluated by MRI
  51. Loneliness in the context of quality of life of nursing home residents
  52. Biological characteristics of cervical precancerous cell proliferation
  53. Effects of Rehabilitation in Bankart Lesion in Non-athletes: A report of three cases
  54. Management of complications of first instance of hepatic trauma in a liver surgery unit: Portal vein ligation as a conservative therapeutic strategy
  55. Matrix metalloproteinase 2 knockdown suppresses the proliferation of HepG2 and Huh7 cells and enhances the cisplatin effect
  56. Comparison of laparoscopy and open radical nephrectomy of renal cell cancer
  57. Case Report
  58. A severe complication of myocardial dysfunction post radiofrequency ablation treatment of huge hepatic hemangioma: a case report and literature review
  59. Solar urticaria, a disease with many dark sides: is omalizumab the right therapeutic response? Reflections from a clinical case report
  60. Research Article
  61. Binge eating disorder and related features in bariatric surgery candidates
  62. Propofol versus 4-hydroxybutyric acid in pediatric cardiac catheterizations
  63. Nasointestinal tube in mechanical ventilation patients is more advantageous
  64. The change of endotracheal tube cuff pressure during laparoscopic surgery
  65. Correlation between iPTH levels on the first postoperative day after total thyroidectomy and permanent hypoparathyroidism: our experience
  66. Case Report
  67. Primary angiosarcoma of the kidney: case report and comprehensive literature review
  68. Research Article
  69. miR-107 enhances the sensitivity of breast cancer cells to paclitaxel
  70. Incidental findings in dental radiology are concerning for family doctors
  71. Suffering from cerebral small vessel disease with and without metabolic syndrome
  72. A meta-analysis of robot assisted laparoscopic radical prostatectomy versus laparoscopic radical prostatectomy
  73. Indications and outcomes of splenectomy for hematological disorders
  74. Expression of CENPE and its prognostic role in non-small cell lung cancer
  75. Barbed suture and gastrointestinal surgery. A retrospective analysis
  76. Using post transplant 1 week Tc-99m DTPA renal scan as another method for predicting renal graft failure
  77. The pseudogene PTTG3P promotes cell migration and invasion in esophageal squamous cell carcinoma
  78. Lymph node ratio versus TNM system as prognostic factor in colorectal cancer staging. A single Center experience
  79. Review Article
  80. Minimally invasive pilonidal sinus treatment: A narrative review
  81. Research Article
  82. Anatomical workspace study of Endonasal Endoscopic Transsphenoidal Approach
  83. Hounsfield Units on Lumbar Computed Tomography for Predicting Regional Bone Mineral Density
  84. Communication
  85. Aspirin, a potential GLUT1 inhibitor in a vascular endothelial cell line
  86. Research Article
  87. Osteopontin and fatty acid binding protein in ifosfamide-treated rats
  88. Familial polyposis coli: the management of desmoid tumor bleeding
  89. microRNA-27a-3p down-regulation inhibits malignant biological behaviors of ovarian cancer by targeting BTG1
  90. PYCR1 is associated with papillary renal cell carcinoma progression
  91. Prediction of recurrence-associated death from localized prostate cancer with a charlson comorbidity index–reinforced machine learning model
  92. Colorectal cancer in the elderly patient: the role of neo-adjuvant therapy
  93. Association between MTHFR genetic polymorphism and Parkinson’s disease susceptibility: a meta-analysis
  94. Metformin can alleviate the symptom of patient with diabetic nephropathy through reducing the serum level of Hcy and IL-33
  95. Case Report
  96. Severe craniofacial trauma after multiple pistol shots
  97. Research Article
  98. Echocardiography evaluation of left ventricular diastolic function in elderly women with metabolic syndrome
  99. Tailored surgery in inguinal hernia repair. The role of subarachnoid anesthesia: a retrospective study
  100. The factors affecting early death in newly diagnosed APL patients
  101. Review Article
  102. Oncological outcomes and quality of life after rectal cancer surgery
  103. Research Article
  104. MiR-638 repressed vascular smooth muscle cell glycolysis by targeting LDHA
  105. microRNA-16 via Twist1 inhibits EMT induced by PM2.5 exposure in human hepatocellular carcinoma
  106. Analyzing the semantic space of the Hippocratic Oath
  107. Fournier’s gangrene and intravenous drug abuse: an unusual case report and review of the literature
  108. Evaluation of surgical site infection in mini-invasive urological surgery
  109. Dihydromyricetin attenuates inflammation through TLR4/NF-kappaB pathway
  110. Clinico-pathological features of colon cancer patients undergoing emergency surgery: a comparison between elderly and non-elderly patients
  111. Case Report
  112. Appendix bleeding with painless bloody diarrhea: A case report and literature review
  113. Research Article
  114. Protective effects of specneuzhenide on renal injury in rats with diabetic nephropathy
  115. PBF, a proto-oncogene in esophageal carcinoma
  116. Use of rituximab in NHL malt type pregnant in I° trimester for two times
  117. Cancer- and non-cancer related chronic pain: from the physiopathological basics to management
  118. Case report
  119. Non-surgical removal of dens invaginatus in maxillary lateral incisor using CBCT: Two-year follow-up case report
  120. Research Article
  121. Risk factors and drug resistance of the MDR Acinetobacter baumannii in pneumonia patients in ICU
  122. Accuracy of tumor perfusion assessment in Rat C6 gliomas model with USPIO
  123. Lemann Index for Assessment of Crohn’s Disease: Correlation with the Quality of Life, Endoscopic Disease activity, Magnetic Resonance Index of Activity and C- Reactive Protein
  124. Case report
  125. Münchausen syndrome as an unusual cause of pseudo-resistant hypertension: a case report
  126. Research Article
  127. Renal artery embolization before radical nephrectomy for complex renal tumour: which are the true advantages?
  128. Prognostic significance of CD276 in non-small cell lung cancer
  129. Potential drug-drug interactions in acute ischemic stroke patients at the Neurological Intensive Care Unit
  130. Effect of vitamin D3 on lung damage induced by cigarette smoke in mice
  131. CircRNA-UCK2 increased TET1 inhibits proliferation and invasion of prostate cancer cells via sponge miRNA-767-5p
  132. Case report
  133. Partial hydatidiform mole and coexistent live fetus: a case report and review of the literature
  134. Research Article
  135. Effect of NGR1 on the atopic dermatitis model and its mechanisms
  136. Clinical features of infertile men carrying a chromosome 9 translocation
  137. Review Article
  138. Expression and role of microRNA-663b in childhood acute lymphocytic leukemia and its mechanism
  139. Case Report
  140. Mature cystic teratoma of the pancreas: A rare cystic neoplasm
  141. Research Article
  142. Application of exercised-based pre-rehabilitation in perioperative period of patients with gastric cancer
  143. Case Report
  144. Predictive factors of intestinal necrosis in acute mesenteric ischemia
  145. Research Article
  146. Application of exercised-based pre-rehabilitation in perioperative period of patients with gastric cancer
  147. Effects of dexmedetomidine on the RhoA /ROCK/ Nox4 signaling pathway in renal fibrosis of diabetic rats
  148. MicroRNA-181a-5p regulates inflammatory response of macrophages in sepsis
  149. Intraventricular pressure in non-communicating hydrocephalus patients before endoscopic third ventriculostomy
  150. CyclinD1 is a new target gene of tumor suppressor miR-520e in breast cancer
  151. CHL1 and NrCAM are primarily expressed in low grade pediatric neuroblastoma
  152. Epidemiological characteristics of postoperative sepsis
  153. Association between unstable angina and CXCL17: a new potential biomarker
  154. Cardiac strains as a tool for optimization of cardiac resynchronization therapy in non-responders: a pilot study
  155. Case Report
  156. Resuscitation following a bupivacaine injection for a cervical paravertebral block
  157. Research Article
  158. CGF treatment of leg ulcers: A randomized controlled trial
  159. Surgical versus sequential hybrid treatment of carotid body tumors
Heruntergeladen am 8.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/med-2019-0091/html
Button zum nach oben scrollen