Home Medicine Echocardiography evaluation of left ventricular diastolic function in elderly women with metabolic syndrome
Article Open Access

Echocardiography evaluation of left ventricular diastolic function in elderly women with metabolic syndrome

  • Jin-Wook Chung , Dong-il Seo , Yoonjung Park and Wi-Young So EMAIL logo
Published/Copyright: August 31, 2019

Abstract

To date, we found no published reports on the effects of metabolic syndrome and physical activity levels on left ventricular (LV) diastolic function in elderly women aged over 65 years. Our study involved patients with echocardiographically normal LV ejection fractions (≥50%) and normal LV dilatation diameters (≤55 mm). Elderly women with metabolic syndrome (n = 20) and healthy elderly women (n = 17) were selected and assessed with the National Cholesterol Education Program Adult Treatment Panel III, a metabolic syndrome diagnostic instrument. We compared the LV function indices and physical activity levels according to the presence (metabolic syndrome group) or absence (normal group) of metabolic syndrome. The LV end-systolic (LVES) diameter was significantly smaller (p = 0.037) and LV outflow tract (LVOT) diameter was significantly larger (p = 0.030) in the metabolic syndrome group. The left arterial dimension at end-systole (p = 0.024), left arterial volume (LAV) index (p = 0.015), early peak mitral inflow velocity (E, p = 0.031), early diastolic mitral annulus motion velocity (Eʹ-septal, p = 0.044), (Eʹ-lateral, p = 0.008), and E/late peak mitral inflow velocity ratio (E/A, p = 0.006) values were significantly lower and physical activity levels (p = 0.034) were significantly higher in the metabolic syndrome group. These results indicated that the metabolic syndrome group had relatively high physical activity levels compared to the normal group, which may have positively affected the LVES, LVOT, left atrial volume index, E, Eʹ, and E/A values.

1 Introduction

The cause of metabolic syndrome has not been clearly elucidated; however, insulin resistance has been commonly reported as the pathophysiological mechanism [1]. Symptoms of metabolic syndrome include abdominal obesity, abnormal serum glucose levels, hypertension, high triglyceride levels, low high-density lipoprotein (HDL) cholesterol levels, and the presence of cardiovascular risk factors [2, 3]. The prevalence and associated mortality rates of cardiovascular diseases are higher among elderly people, especially women, than among young people [4]. Although the lack of physical activity among elderly people increases their risk of metabolic syndrome and cardiovascular diseases, regular physical activity can help improve their health by reducing hypertension and decreasing low-density lipoprotein cholesterol levels [5].

Obesity results in structural and functional cardiac changes that are caused by the increased amounts of adipose tissue and oxygen demand. These changes result in increased cardiac output and, consequently, increased left ventricular (LV) mass [6]. Higher degrees of obesity, specifically abdominal obesity, are reported to lessen LV relaxation [7]. In addition, if LV systolic dysfunction occurs, a high left atrial pressure is required to maintain the cardiac output, thereby increasing LV diastolic pressure, which eventually promotes heart failure or other cardiovascular diseases [8, 9].

Regular physical activity is an important factor for the prevention and treatment of metabolic syndrome [10] and positively affects cardiovascular risk factors [11]. LV relaxation function can be affected by physical activity habit and is also related to metabolic syndrome; thus, identifying the relationship between physical activity levels and LV relaxation function according to the presence of metabolic syndrome in elderly females can be meaningful basic data to curtail medical expenses. In particular, various studies have reported the benefits of physical activity for improving metabolic syndrome and cardiovascular risk factors in elderly people [12, 13]. However, none have reported the effects of metabolic syndrome and physical activity levels on LV diastolic function in elderly women. Therefore, in this study, we compared physical activity levels among elderly women with and without metabolic syndrome and analyzed the factors related to LV diastolic function in these groups of women.

2 Methods

2.1 Patients

In this study, we examined 190 patients who visited a health promotion center (Dongguk University, Gyeongju, Republic of Korea) for a health check-up and volunteered for the study. They understood the purpose of the study and provided consent. Thereafter, they underwent carotid intima-media thickness measurements and echocardiography between September and December 2015 at the center. The study included only patients with echocardiographically normal LV ejection fraction (LVEF, ≥50%) and normal LV dilatation diameter (≤55 mm). Patients with cardiovascular disease and complications (angina, myocardial infarction, heart failure, and stroke), valvular disease, and arrhythmia were excluded. Patients with diseases or those who were taking medications for the treatment of diseases that could affect LV diastolic function, such as hypertension, diabetes, hyperlipidemia, anemia, and thyroid or renal dysfunction, were also excluded. Moreover, they did not participate regularly in exercise program, no musculoskeletal diseases, were non-smokers, and did not take any dietary supplements. Patients were assessed using the National Cholesterol Education Program Adult Treatment Panel-III—a metabolic syndrome diagnostic instrument [14].

We compared LV function indices and physical activity levels according to presence or absence of metabolic syndrome in elderly women. The Institutional Review Board of Dongguk University Hospital approved this study.

2.2 Measurements

Blood pressure was measured after patients rested for ≥10 minutes; once the readings were stable, pulse rates and systolic and diastolic blood pressures were measured with an automatic sphygmomanometer (Space-Labs Medical, model 90207, USA) attached to the right upper arm. All patients fasted for >8 hours before their blood samples were collected for glucose (blood sugar), triglyceride, and HDL cholesterol level determinations. Body weights and heights were measured by the BSM 330 (Biospace, Seoul, Korea), with each patient in the standing position and wearing an examination gown but without shoes. The body mass index (kg/m2) was calculated by dividing the body weight by the squared height value. Waist circumference was measured to the nearest 0.1 cm at a point between the lowest rib and the iliac crest while the patient was in the standing position, in order to assess abdominal obesity. In women, abdominal obesity is indicated by a waist circumference of >85 cm, as defined by the Korean Society for the Study of Obesity [15].

A structured lifestyle questionnaire was administered to patients to determine their smoking and physical activity habits. For smoking, participants were classified as “never smoked,” “past smokers,” and “present smokers.” Physical activity was assessed using the International Physical Activity Questionnaire, with the amount of physical activity scored as metabolic equivalent task-minutes/week [16].

The Vivid 7 Dimension instrument (GE Medical, Chicago, IL, USA) was used for echocardiography. M-mode was measured from the papillary muscles in the LV parasternal short-axis views and was used to measure the left atrial dimension (LAD), LV end-diastolic dimension (LVD diastole), LV end-systolic dimension (LVD systole), LVEF, and left atrial volume (LAV). The LV mass index was determined by dividing the body surface area by the mass value. To calculate the LV systolic function index, the ratio between the early (E) and late (A) peak mitral inflow velocity (E/A ratio) was determined; the early (Eʹ) and late (Aʹ) diastolic mitral annulus motion velocities were measured at the mitral septum, and the deceleration time (DT) was determined.

2.3 Statistical analysis

Descriptive variables are presented as means ± standard deviations. Data analyses were performed via independent t-tests, with statistical significance set at p < 0.05. SPSS 21.0 (IBM, Armonk, NY, USA) was used to perform all analyses.

3 Results

Among the 90 patients (36 men and 54 women) who met the inclusion criteria, 20 elderly women with metabolic syndrome and 17 healthy elderly women were selected for inclusion in the study. With the exception of patients with two risk factors for metabolic syndrome, normal individuals were selected. General characteristics of patients in each group are shown in Table 1.

Table 1

General characteristics of the patients

Metabolic syndrome (n = 20) Normal (n = 17) p
Age (years) 74.6 ± 4.3 71.4 ± 5.3 0.051
Height (cm) 152.0 ± 7.0 153.0 ± 6.0 0.874
Weight (kg) 59.3 ± 10.2 54.8 ± 7.8 0.143
Body mass index (kg/m2) 25.6 ± 3.7 23.7 ± 3.4 0.105
Systolic blood pressure (mmHg) 135.8 ± 14.0 126.9 ± 14.5 0.067
Diastolic blood pressure (mmHg) 80.7 ± 11.4 77 ± 10.6 0.324
Waist circumference (cm) 89.0 ± 10.7 81.0 ± 8.5 0.019*
Blood glucose level (mg/dL) 120.1 ± 43.3 88.7 ± 7.2 0.006**
Triglyceride level (mg/dL) 173.3 ± 64.3 94.5 ± 29.7 <0.001***
High density lipoprotein cholesterol level (mg/dL) 56.4 ± 16.5 65.2 ± 12.2 0.077
  1. Data are expressed as means ± standard deviations

    *p < 0.05, ** p< 0.01, ***p < 0.001, as tested using the independent t-tes

The LV function indices and physical activity levels are shown in Table 2. The mean LV end-systolic diameter (LVES) was significantly smaller in patients in the metabolic syndrome group compared to in those in the normal group (p = 0.037). Furthermore, the mean LV outflow tract (LVOT) diameter was significantly larger in the metabolic syndrome group (p = 0.030). However, the mean left atrial volume (LAV) was significantly lower in the metabolic syndrome group than for the normal group (p = 0.024), as was the LAV index (p = 0.015). Further, the mean E (p = 0.031), Eʹ-septal (p = 0.044), Eʹ-lateral (p = 0.008), and E/A ratio (p = 0.006) values were all significantly lower, and mean physical activity level was significantly higher (p = 0.034) in the metabolic syndrome group.

Table 2

Patient left ventricular function indices and physical activity levels

Group Metabolic syndrome (n = 20) Normal (n = 17) p
LVEF (%) 63.50 ± 1.90 62.65 ± 2.01 0.203
LVED (mm) 46.50 ± 3.49 46.00 ± 11.54 0.855
LVES (mm) 26.60 ± 2.74 28.71 ± 3.18 0.037*
IVSD (mm) 10.55 ± 1.67 10.06 ± 1.85 0.402
IVSS (mm) 16.25 ± 1.97 15.41 ± 1.77 0.185
PWTD (mm) 10.15 ± 1.60 9.35 ± 1.66 0.146
PWTS (mm) 15.90 ± 1.37 16.00 ± 1.66 0.842
LV mass (g) 172.30 ± 39.23 169.76 ± 42.26 0.851
LV index (g/m2) 109.85 ± 22.39 112.94 ± 27.46 0.708
LVOT (mm) 21.35 ± 1.42 20.00 ± 2.18 0.030*
AOD (mm) 32.35 ± 2.32 30.94 ± 3.27 0.136
LAD (mm) 42.50 ± 4.62 43.94 ± 7.14 0.464
LAV (mL) 50.45 ± 12.10 67.18 ± 28.95 0.024*
LAV index (mL/m2) 32.80 ± 6.82 45.06 ± 20.20 0.015*
E (cm/sec) 48.1 ± 11.7 58.8 ± 17.0 0.031*
A (cm/s) 87.9 ± 18.3 82.8 ± 9.8 0.308
DT (ms) 217.70 ± 51.07 207.53 ± 47.41 0.537
PHT (ms) 64.60 ± 15.3 61.82 ± 14.32 0.574
E’-septal (cm/s) 4.70 ± 0.87 5.53 ± 1.50 0.044*
E’-lateral (cm/s) 6.15 ± 1.38 7.44 ± 1.31 0.008**
E/E’ 8.85 ± 2.11 9.24 ± 2.43 0.609
E/A 0.55 ± 0.09 0.67 ± 0.17 0.006**
Physical activity (metabolic equivalent-min/week) 2557 ± 1593 1622 ± 766 0.034*
  1. Data are expressed as means ± standard deviations.

    *p < 0.05, ** p< 0.01, as tested using the independent t-test.

    LVEF, left ventricular ejection fraction; LVED, left ventricular end-diastole diameter; LVES, left ventricular end-systole diameter; IVSD, interventricular septum at end-diastole; IVSS, interventricular septum at end-systole; PWTD, posterior wall thickness in diastole; PWTS, posterior wall thickness in systole; LVOT, left ventricular outflow tract; AOD, aortic dimension at end-diastole; LAD, left arterial dimension at end-systole; E, early peak mitral inflow velocity; A, late peak mitral inflow velocity; DT, decelerating time; PHT, pressure half time

In contrast, mean values of LVEF, LV end-diastolic diameter, interventricular septum thickness at end-diastole and end-systole, posterior wall thickness in diastole and systole, LV mass, LV mass index, aortic dimension at end-diastole, left arterial dimension at end-systole, A, DT, pressure half time, and E/Eʹ ratio were not significantly different between the two groups.

4 Discussion

In this study, the mean LVES was significantly smaller in the metabolic syndrome group than in the normal group. Bhat et al. [17] reported that the LVES, measured using echocardiography, is effective for predicting the recovery of patients with poor LV function. Thus, the smaller the LVES, the more normal the contractile force of the LV. In the present study, metabolic syndrome was determined to not adversely affect the LVES because its value was normal in the normal group and smaller in the metabolic syndrome group. These results are consistent with those of the study by Ayalon et al. [18] in which the LV diameter was not statistically different between the metabolic syndrome and normal groups. However, the LVES can be affected by the aging process as well as by physical activity levels; thus, it cannot be concluded that metabolic syndrome does not affect the LVES. In this study, the mean LVOT (pathway of blood flow from the LV to the aorta) diameter was also significantly larger in the metabolic syndrome group. As LVOT stenosis is an important factor for heart failure, the metabolic syndrome group was expected to have a lower mean value than the normal group [19]. However, both groups showed a normal range of outcome. These results are attributed to the fact that the physical activity level is higher in the metabolic syndrome group. Also, LVOT can be an important factor for functional atrophy in the LV and should be managed in the process of aging; therefore, a future study examining additional effects of physical activity is needed. The present study was limited to determining the effects of physical activity levels on LVOT. The LAV and LAV index were significantly smaller in the metabolic syndrome group than in the normal group. The greater the LAD, the greater the risk of heart failure due to large LAV in patients with atrial fibrillation; previous studies have also reported the association of metabolic syndrome with the LAD [20]. Specifically, previous studies have reported that the LAV index is higher in patients with metabolic syndrome than in healthy individuals [21]. However, the present study showed contradictory results. The results of the present study are limited in explaining that the LV diastolic function is better in the metabolic syndrome group. However, we judged that this result was influenced by physical activity levels in this group.

In this study, the mean E, Eʹ, and E/A ratio values were significantly lower in the metabolic syndrome group compared to the normal group. These values, which reflect the LV relaxation function, were not elevated, despite being exposed to metabolic syndrome. Thus, these values do not reflect the increases associated with changes in cardiac output [22, 23]. Thus, although physical activity levels could not normalize the LV diastolic function, it can be suggested that the levels also did not worsen the function. However, additional research is required because of the limited number of included patients and the short duration of this study.

In this study, the mean physical activity level was significantly higher in the metabolic syndrome group than in the normal group. As a result, the LVOT, LAV, and E values for patients in the metabolic syndrome group, exhibiting high physical activity levels, were significantly better than those for patients in the normal group. However, it can be concluded that higher physical activity levels can restore normal LV function, indicating that physical activity levels in patients may have an indirect effect on the LV function. An additional analysis of the reasons behind the high physical activity levels and specific physical activity, in patients in the metabolic syndrome group is necessary.

This study has some limitations. First, the sample size was low. A future study should recruit more patients to compare physical activity levels among elderly women with and without metabolic syndrome and factors related to LV diastolic function. Second, this study observed only factors related to LV diastolic function. Further study should be conducted to examine heart functions such as cardiac failure and cardiac insufficiency. Third, as patients were recruited from only one health promotion center in Korea, they cannot represent the entire Korean elderly female population. Fourth, the results of this study are limited in explaining the relationship between the LV function and physical activity levels, and further analysis of the training effect on physical activity levels may provide more specific information on the effects of physical activity on LV function. Nevertheless, this study has a strength in that it focused on the LV diastolic function, which has been rarely reported in the field of medicine and public health.

5 Conclusion

This study showed that the LV function in elderly women with metabolic syndrome may differ according to their physical activity levels. Women with metabolic syndrome demonstrated higher physical activity levels than normal women. Thus, this higher physical activity level appears to have positively affected the LVES, LVOT, LAV index, E, Eʹ, and E/A ratio values.


Tel. office: 82-43-841-5993, Fax: 82-43-841-5990

# These authors contributed equally to this work.


Acknowledgements

This study was supported by the Dongguk University Research Fund, Gyeongju, Republic of Korea. The authors have no conflicts of interest to declare.

  1. Conflict of interest

    Conflict of interest statement: Authors state no conflict of interest

References

[1] Eckel RH, Grundy SM, Zimmet PZ, et al. The metabolic syndrome. Lancet 2005;365:1415-142810.1016/S0140-6736(05)66378-7Search in Google Scholar

[2] Alberti KG, Eckel RH, Grundy SM, et al. Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 2009;120:1640-164510.1161/CIRCULATIONAHA.109.192644Search in Google Scholar PubMed

[3] Isomaa B, Almgren P, Tuomi T, et al. Cardiovascular morbidity and mortality associated with the metabolic syndrome. Diabetes Care 2001;24:683-68910.2337/diacare.24.4.683Search in Google Scholar PubMed

[4] Mosca L, Benjamin EJ, Berra K, et al. Effectiveness-based guidelines for the prevention of cardiovascular disease in women-2011 update: a guideline from the American Heart Association. J Am Coll Cardiol 2011;57(12):1404-142310.1161/CIR.0b013e31820faaf8Search in Google Scholar PubMed PubMed Central

[5] Chae YR, Kim JI, Lim KD. Relationship between physical activity and cardiovascular outcomes in the Korean elderly: Review of experimental studies. Korean J Women Health Nurs 2014;20(4):309-31710.4069/kjwhn.2014.20.4.309Search in Google Scholar

[6] Poirier P, Giles TD, Bray GA, et al. Obesity and cardiovascular disease: pathophysiology, evaluation, and effect of weight loss: an update of the 1997 American Heart Association Scientific Statement on Obesity and Heart Dis ease from the Obesity Committee of the Council on Nutrition, Physical Activity, and Metabolism. Circulation 2006;113:898-91810.1161/CIRCULATIONAHA.106.171016Search in Google Scholar PubMed

[7] Alpert MA, Omran J, Bostick BP. Effects of obesity on cardiovascular hemodynamics, cardiac morphology, and ventricular function. Curr Obes Rep 2016;5(4):424-43410.1007/s13679-016-0235-6Search in Google Scholar PubMed

[8] Michelsen MM, Pena A, Mygind ND, et al. Overlap between angina without obstructive coronary artery disease and left ventricular diastolic dysfunction with preserved ejection fraction. PLoS One 2019;14(5):e021624010.1371/journal.pone.0216240Search in Google Scholar PubMed PubMed Central

[9] Van Riet EE, Hoes AW, Wagenaar KP, et al. Epidemiology of heart failure: the prevalence of heart failure and ventricular dysfunction in older adults over time. A systematic review. Eur J Heart Fail 2016;18(3):242-25210.1002/ejhf.483Search in Google Scholar PubMed

[10] Ostman C, Smart NA, Morcos D, et al. The effect of exercise training on clinical outcomes in patients with the metabolic syndrome: a systematic review and meta-analysis. Cardiovasc Diabetol 2017;16:11010.1186/s12933-017-0590-ySearch in Google Scholar PubMed PubMed Central

[11] Jakovljevic DG. Physical activity and cardiovascular aging: Physiological and molecular insights. Exp Gerontol 2018;109:67-7410.1016/j.exger.2017.05.016Search in Google Scholar PubMed

[12] Chomistek AK, Manson JE, Stefanick ML. Relationship of sedentary behavior and physical activity to incident cardiovascular disease: results from the Women’s Health Initiative. J Am Coll Cardiol 2013;61(23):2346-235410.1016/j.jacc.2013.03.031Search in Google Scholar PubMed PubMed Central

[13] Hwang HJ, Kim SH. The association among three aspects of physical fitness and metabolic syndrome in a Korean elderly population. Diabetol Metab Syndr 2015;7:11210.1186/s13098-015-0106-4Search in Google Scholar PubMed PubMed Central

[14] Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults: Executive Summary of The Third Report of The National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, And Treatment of High Blood Cholesterol In Adults (Adult Treatment Panel III). JAMA 2001;285:2486-249710.1001/jama.285.19.2486Search in Google Scholar PubMed

[15] Lee SY, Park HS, Kim SM, et al. Cutoff points of waist circumference for defining abdominal obesity in the Korean population. Korean J Obes 2006;15:1-9Search in Google Scholar

[16] IPAQ Research Committee. Guidelines for data processing and analysis of the International Physical Activity Questionnaire (IPAQ) – Short and Long Forms. 2005 Revised. Available from: URL:http://www.ipaq.ki.se/scoring.htmSearch in Google Scholar

[17] Bhat PK, Ashwath ML, Rosenbaum DS, et al. Usefulness of left ventricular end-systolic dimension by echocardiography to predict reverse remodeling in patients with newly diagnosed severe left ventricular systolic dysfunction. Am J Cardiol 2012;110(1):83-8710.1016/j.amjcard.2012.02.054Search in Google Scholar PubMed

[18] Ayalon N, Gopal DM, Mooney DM, et al. Preclinical left ventricular diastolic dysfunction in metabolic syndrome. Am J Cardiol 2014;114(6):838-84210.1016/j.amjcard.2014.06.013Search in Google Scholar PubMed PubMed Central

[19] Sagmeister F, Weininger M, Herrmann S, et al. Extent of size, shape and systolic variability of the left ventricular outflow tract in aortic stenosis determined by phase-contrast MRI. Magn Reson Imaging 2018;45:58-6510.1016/j.mri.2017.09.002Search in Google Scholar PubMed

[20] Chang SL, Tuan TC, Tai CT, et al. Comparison of outcome in catheter ablation of atrial fibrillation in patients with versus without the metabolic syndrome. Am J Cardiol 2009;103(1):67-7210.1016/j.amjcard.2008.08.042Search in Google Scholar PubMed

[21] Kurt M, Tanboğa IH, Büyükkaya E, et al. Relation of presence and severity of metabolic syndrome with left atrial mechanics in patients without overt diabetes: a deformation imaging study. Anadolu Kardiyol Derg 2014;14(2):128-13310.5152/akd.2014.4686Search in Google Scholar PubMed

[22] D’Andrea A, Vriz O, Ferrara F, et al. Reference ranges and physiologic variations of left E/e’ ratio in healthy adults: clinical and echocardiographic correlates. J Cardiovasc Echogr 2018;28(2):101-10810.4103/jcecho.jcecho_57_17Search in Google Scholar PubMed PubMed Central

[23] Di Chiara T, Tuttolomondo A, Parrinello G, et al. Obesity related changes in cardiac structure and function: role of blood pressure and metabolic abnormalities. Acta Cardiol 2019; Apr 24:1-8 [Epub ahead of print]Search in Google Scholar

Received: 2019-04-10
Accepted: 2019-06-25
Published Online: 2019-08-31

© 2019 Jin-Wook Chung et al., published by De Gruyter

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Articles in the same Issue

  1. Research Article
  2. Prostate Cancer-Specific of DD3-driven oncolytic virus-harboring mK5 gene
  3. Case Report
  4. Pediatric acute paradoxical cerebral embolism with pulmonary embolism caused by extremely small patent foramen ovale
  5. Research Article
  6. Associations between ambient temperature and acute myocardial infarction
  7. Case Report
  8. Discontinuation of imatinib mesylate could improve renal impairment in chronic myeloid leukemia
  9. Research Article
  10. METTL3 promotes the proliferation and mobility of gastric cancer cells
  11. The C677T polymorphism of the methylenetetrahydrofolate reductase gene and susceptibility to late-onset Alzheimer’s disease
  12. microRNA-1236-3p regulates DDP resistance in lung cancer cells
  13. Review Article
  14. The link between thyroid autoimmunity, depression and bipolar disorder
  15. Research Article
  16. Effects of miR-107 on the Chemo-drug sensitivity of breast cancer cells
  17. Analysis of pH dose-dependent growth of sulfate-reducing bacteria
  18. Review Article
  19. Musculoskeletal clinical and imaging manifestations in inflammatory bowel diseases
  20. Research Article
  21. Regional hyperthermia combined with chemotherapy in advanced gastric cancer
  22. Analysis of hormone receptor status in primary and recurrent breast cancer via data mining pathology reports
  23. Morphological and isokinetic strength differences: bilateral and ipsilateral variation by different sport activity
  24. The reliability of adjusting stepped care based on FeNO monitoring for patients with chronic persistent asthma
  25. Comparison of the clinical outcomes of two physiological ischemic training methods in patients with coronary heart disease
  26. Analysis of ticagrelor’s cardio-protective effects on patients with ST-segment elevation acute coronary syndrome accompanied with diabetes
  27. Computed tomography findings in patients with Samter’s Triad: an observational study
  28. Case Report
  29. A spinal subdural hematoma induced by guidewire-based lumbar drainage in a patient with ruptured intracranial aneurysms
  30. Research Article
  31. High expression B3GAT3 is related with poor prognosis of liver cancer
  32. Effects of light touch on balance in patients with stroke
  33. Oncoprotein LAMTOR5 activates GLUT1 via upregulating NF-κB in liver cancer
  34. Effects of budesonide combined with noninvasive ventilation on PCT, sTREM-1, chest lung compliance, humoral immune function and quality of life in patients with AECOPD complicated with type II respiratory failure
  35. Prognostic significance of lymph node ratio in ovarian cancer
  36. Case Report
  37. Brainstem anaesthesia after retrobulbar block
  38. Review Article
  39. Treating infertility: current affairs of cross-border reproductive care
  40. Research Article
  41. Serum inflammatory cytokines comparison in gastric cancer therapy
  42. Behavioural and psychological symptoms in neurocognitive disorders: Specific patterns in dementia subtypes
  43. MRI and bone scintigraphy for breast cancer bone metastase: a meta-analysis
  44. Comparative study of back propagation artificial neural networks and logistic regression model in predicting poor prognosis after acute ischemic stroke
  45. Analysis of the factors affecting the prognosis of glioma patients
  46. Compare fuhrman nuclear and chromophobe tumor grade on chromophobe RCC
  47. Case Report
  48. Signet ring B cell lymphoma: A potential diagnostic pitfall
  49. Research Article
  50. Subparaneural injection in popliteal sciatic nerve blocks evaluated by MRI
  51. Loneliness in the context of quality of life of nursing home residents
  52. Biological characteristics of cervical precancerous cell proliferation
  53. Effects of Rehabilitation in Bankart Lesion in Non-athletes: A report of three cases
  54. Management of complications of first instance of hepatic trauma in a liver surgery unit: Portal vein ligation as a conservative therapeutic strategy
  55. Matrix metalloproteinase 2 knockdown suppresses the proliferation of HepG2 and Huh7 cells and enhances the cisplatin effect
  56. Comparison of laparoscopy and open radical nephrectomy of renal cell cancer
  57. Case Report
  58. A severe complication of myocardial dysfunction post radiofrequency ablation treatment of huge hepatic hemangioma: a case report and literature review
  59. Solar urticaria, a disease with many dark sides: is omalizumab the right therapeutic response? Reflections from a clinical case report
  60. Research Article
  61. Binge eating disorder and related features in bariatric surgery candidates
  62. Propofol versus 4-hydroxybutyric acid in pediatric cardiac catheterizations
  63. Nasointestinal tube in mechanical ventilation patients is more advantageous
  64. The change of endotracheal tube cuff pressure during laparoscopic surgery
  65. Correlation between iPTH levels on the first postoperative day after total thyroidectomy and permanent hypoparathyroidism: our experience
  66. Case Report
  67. Primary angiosarcoma of the kidney: case report and comprehensive literature review
  68. Research Article
  69. miR-107 enhances the sensitivity of breast cancer cells to paclitaxel
  70. Incidental findings in dental radiology are concerning for family doctors
  71. Suffering from cerebral small vessel disease with and without metabolic syndrome
  72. A meta-analysis of robot assisted laparoscopic radical prostatectomy versus laparoscopic radical prostatectomy
  73. Indications and outcomes of splenectomy for hematological disorders
  74. Expression of CENPE and its prognostic role in non-small cell lung cancer
  75. Barbed suture and gastrointestinal surgery. A retrospective analysis
  76. Using post transplant 1 week Tc-99m DTPA renal scan as another method for predicting renal graft failure
  77. The pseudogene PTTG3P promotes cell migration and invasion in esophageal squamous cell carcinoma
  78. Lymph node ratio versus TNM system as prognostic factor in colorectal cancer staging. A single Center experience
  79. Review Article
  80. Minimally invasive pilonidal sinus treatment: A narrative review
  81. Research Article
  82. Anatomical workspace study of Endonasal Endoscopic Transsphenoidal Approach
  83. Hounsfield Units on Lumbar Computed Tomography for Predicting Regional Bone Mineral Density
  84. Communication
  85. Aspirin, a potential GLUT1 inhibitor in a vascular endothelial cell line
  86. Research Article
  87. Osteopontin and fatty acid binding protein in ifosfamide-treated rats
  88. Familial polyposis coli: the management of desmoid tumor bleeding
  89. microRNA-27a-3p down-regulation inhibits malignant biological behaviors of ovarian cancer by targeting BTG1
  90. PYCR1 is associated with papillary renal cell carcinoma progression
  91. Prediction of recurrence-associated death from localized prostate cancer with a charlson comorbidity index–reinforced machine learning model
  92. Colorectal cancer in the elderly patient: the role of neo-adjuvant therapy
  93. Association between MTHFR genetic polymorphism and Parkinson’s disease susceptibility: a meta-analysis
  94. Metformin can alleviate the symptom of patient with diabetic nephropathy through reducing the serum level of Hcy and IL-33
  95. Case Report
  96. Severe craniofacial trauma after multiple pistol shots
  97. Research Article
  98. Echocardiography evaluation of left ventricular diastolic function in elderly women with metabolic syndrome
  99. Tailored surgery in inguinal hernia repair. The role of subarachnoid anesthesia: a retrospective study
  100. The factors affecting early death in newly diagnosed APL patients
  101. Review Article
  102. Oncological outcomes and quality of life after rectal cancer surgery
  103. Research Article
  104. MiR-638 repressed vascular smooth muscle cell glycolysis by targeting LDHA
  105. microRNA-16 via Twist1 inhibits EMT induced by PM2.5 exposure in human hepatocellular carcinoma
  106. Analyzing the semantic space of the Hippocratic Oath
  107. Fournier’s gangrene and intravenous drug abuse: an unusual case report and review of the literature
  108. Evaluation of surgical site infection in mini-invasive urological surgery
  109. Dihydromyricetin attenuates inflammation through TLR4/NF-kappaB pathway
  110. Clinico-pathological features of colon cancer patients undergoing emergency surgery: a comparison between elderly and non-elderly patients
  111. Case Report
  112. Appendix bleeding with painless bloody diarrhea: A case report and literature review
  113. Research Article
  114. Protective effects of specneuzhenide on renal injury in rats with diabetic nephropathy
  115. PBF, a proto-oncogene in esophageal carcinoma
  116. Use of rituximab in NHL malt type pregnant in I° trimester for two times
  117. Cancer- and non-cancer related chronic pain: from the physiopathological basics to management
  118. Case report
  119. Non-surgical removal of dens invaginatus in maxillary lateral incisor using CBCT: Two-year follow-up case report
  120. Research Article
  121. Risk factors and drug resistance of the MDR Acinetobacter baumannii in pneumonia patients in ICU
  122. Accuracy of tumor perfusion assessment in Rat C6 gliomas model with USPIO
  123. Lemann Index for Assessment of Crohn’s Disease: Correlation with the Quality of Life, Endoscopic Disease activity, Magnetic Resonance Index of Activity and C- Reactive Protein
  124. Case report
  125. Münchausen syndrome as an unusual cause of pseudo-resistant hypertension: a case report
  126. Research Article
  127. Renal artery embolization before radical nephrectomy for complex renal tumour: which are the true advantages?
  128. Prognostic significance of CD276 in non-small cell lung cancer
  129. Potential drug-drug interactions in acute ischemic stroke patients at the Neurological Intensive Care Unit
  130. Effect of vitamin D3 on lung damage induced by cigarette smoke in mice
  131. CircRNA-UCK2 increased TET1 inhibits proliferation and invasion of prostate cancer cells via sponge miRNA-767-5p
  132. Case report
  133. Partial hydatidiform mole and coexistent live fetus: a case report and review of the literature
  134. Research Article
  135. Effect of NGR1 on the atopic dermatitis model and its mechanisms
  136. Clinical features of infertile men carrying a chromosome 9 translocation
  137. Review Article
  138. Expression and role of microRNA-663b in childhood acute lymphocytic leukemia and its mechanism
  139. Case Report
  140. Mature cystic teratoma of the pancreas: A rare cystic neoplasm
  141. Research Article
  142. Application of exercised-based pre-rehabilitation in perioperative period of patients with gastric cancer
  143. Case Report
  144. Predictive factors of intestinal necrosis in acute mesenteric ischemia
  145. Research Article
  146. Application of exercised-based pre-rehabilitation in perioperative period of patients with gastric cancer
  147. Effects of dexmedetomidine on the RhoA /ROCK/ Nox4 signaling pathway in renal fibrosis of diabetic rats
  148. MicroRNA-181a-5p regulates inflammatory response of macrophages in sepsis
  149. Intraventricular pressure in non-communicating hydrocephalus patients before endoscopic third ventriculostomy
  150. CyclinD1 is a new target gene of tumor suppressor miR-520e in breast cancer
  151. CHL1 and NrCAM are primarily expressed in low grade pediatric neuroblastoma
  152. Epidemiological characteristics of postoperative sepsis
  153. Association between unstable angina and CXCL17: a new potential biomarker
  154. Cardiac strains as a tool for optimization of cardiac resynchronization therapy in non-responders: a pilot study
  155. Case Report
  156. Resuscitation following a bupivacaine injection for a cervical paravertebral block
  157. Research Article
  158. CGF treatment of leg ulcers: A randomized controlled trial
  159. Surgical versus sequential hybrid treatment of carotid body tumors
Downloaded on 10.1.2026 from https://www.degruyterbrill.com/document/doi/10.1515/med-2019-0073/html
Scroll to top button