Home Some new parameterized inequalities for co-ordinated convex functions involving generalized fractional integrals
Article Open Access

Some new parameterized inequalities for co-ordinated convex functions involving generalized fractional integrals

  • Humaira Kalsoom , Hüseyin Budak EMAIL logo , Hasan Kara and Muhammad Aamir Ali
Published/Copyright: November 18, 2021

Abstract

In this study, we first obtain a new identity for generalized fractional integrals which contains some parameters. Then by this equality, we establish some new parameterized inequalities for co-ordinated convex functions involving generalized fractional integrals. Moreover, we show that the results proved in the main section reduce to several Simpson-, trapezoid- and midpoint-type inequalities for various values of parameters.

MSC 2010: 26D07; 26D10; 26D15; 26B15; 26B25

1 Introduction

The inequalities discovered by C. Hermite and J. Hadamard for convex functions are considered significant in the literature. These inequalities state that if F : I R is a convex function on the interval I of real numbers and κ 1 , κ 2 I with κ 1 < κ 2 , then

(1.1) F κ 1 + κ 2 2 1 κ 2 κ 1 κ 1 κ 2 F ( τ 1 ) d τ 1 F ( κ 1 ) + F ( κ 2 ) 2 .

Both inequalities hold in the reversed direction if F is concave.

Over the last 20 years, numerous studies have focused on obtaining trapezoid- and midpoint-type inequalities which give bounds for the right-hand side and left-hand side of the inequality (1.1), respectively. For example, Dragomir and Agarwal first obtained trapezoid inequalities for convex functions in [1], whereas Kirmacı first, established midpoint inequalities for convex functions in [2]. In [3], Sarikaya et al. generalized the inequalities (1.1) for fractional integrals and the authors also proved some corresponding trapezoid-type inequalities. Iqbal et al. presented some fractional midpoint-type inequalities for convex functions in [4]. On the other hand, Dragomir proved Hermite-Hadamard inequalities for co-ordinated convex mappings in [5]. In [6] and [7], the authors proved midpoint- and trapezoid-type inequalities for co-ordinated convex functions, respectively. Moreover, Sarikaya obtained fractional Hermite-Hadamard inequalities and fractional trapezoid for functions with two variables in [8]. Tunç et al. presented some fractional midpoint-type inequalities for co-ordinated convex functions in [9]. In [10], Sarikaya and Ertuğral first introduced new fractional integrals which are called generalized fractional integrals, and then, they proved Hermite-Hadamard inequalities and several trapezoid- and midpoint-type inequalities for generalized fractional integrals. In addition, Turkay et al. defined the generalized fractional integrals for functions with two variables and they presented Hermite-Hadamard- and trapezoid-type inequalities for this kind of fractional integrals in [11]. For the other similar inequalities, please refer to [12,13,14, 15,16,17, 18,19].

On the other hand, the following inequality is well known in the literature as Simpson’s inequality.

Theorem 1

Suppose that F : [ κ 1 , κ 2 ] R is a four times continuously differentiable mapping on ( κ 1 , κ 2 ) , and let F ( 4 ) = sup τ 1 ( κ 1 , κ 2 ) F ( 4 ) ( τ 1 ) < . Then, one has the inequality

1 3 F ( κ 1 ) + F ( κ 2 ) 2 + 2 F κ 1 + κ 2 2 1 κ 2 κ 1 κ 1 κ 2 F ( τ 1 ) d τ 1 1 2880 F ( 4 ) ( κ 2 κ 1 ) 4 .

In recent years, many authors have focused on Simpson-type inequalities for various classes of functions. For example, Dragomir et al. presented new Simpson-type results and their applications to quadrature formulas in numerical integration in [20]. In addition, some inequalities of Simpson-type for η -convex functions are deduced by Alomari et al. in [21]. Afterward, Sarikaya et al. observed the variants of Simpson-type inequalities based on convexity in [22]. Moreover, some papers are devoted to Simpson inequalities for co-ordinated convex functions [23,24, 25,26]. On the other hand, some authors proved several Simpson-type inequalities for fractional integrals in [27,28, 29,30]. In addition, in [31], Ertugral and Sarikaya obtained some inequalities of Simpson-type for generalized fractional integrals. For more recent developments, one can refer to [32,33, 34,35,36, 37,38].

The aim of this paper is to obtain some parameterized inequalities for co-ordinated convex functions via generalized fractional integrals. These inequalities reduce to Simpson, trapezoid and midpoint inequalities in the case of special choice of parameters. The overall structure of the study takes the form of six sections including an introduction. The remaining part of the paper proceeds as follows: In Section 2, the generalized fractional integral operators is summarized, along with some related theorems. In Section 3, an identity involving generalized fractional integrals is presented for partial differentiable functions. Then we prove several parameterized inequalities for functions whose partial derivatives in absolute value are co-ordinated convex in Section 4. Moreover, some special cases of the results in Section 4 are presented in Section 5. Finally, some conclusions and further directions of research are discussed in Section 6.

A formal definition for co-ordinated convex function may be stated as follows:

Definition 1

A function F : Δ [ κ 1 , κ 2 ] × [ κ 3 , κ 4 ] R is called co-ordinated convex on Δ , for all ( x , u ) , ( y , v ) Δ and t , s [ 0 , 1 ] , if it satisfies the following inequality:

(1.2) F ( t x + ( 1 t ) y , s u + ( 1 s ) v ) t s F ( x , u ) + t ( 1 s ) F ( x , v ) + s ( 1 t ) F ( y , u ) + ( 1 t ) ( 1 s ) F ( y , v ) .

The mapping F is a co-ordinated concave on Δ if the inequality (1.2) holds in the reversed direction for all t , s [ 0 , 1 ] and ( x , u ) , ( y , v ) Δ .

2 Generalized fractional integrals

Fractional calculus and applications have application areas in many different fields such as physics, chemistry and engineering as well as mathematics. The application of arithmetic carried out in classical analysis in fractional analysis is very important in terms of obtaining more realistic results in the solution of many problems. Many real dynamical systems are better characterized by using non-integer order dynamic models based on fractional computation. While integer orders are a model that is not suitable for nature in classical analysis, fractional computation in which arbitrary orders are examined enables us to obtain more realistic approaches.

In this section, we summarize the generalized fractional integrals defined by Sarikaya and Ertuğral in [10].

Definition 2

Let F : [ κ 1 , κ 2 ] R be an integrable function. The left-sided and right-sided generalized fractional integral operators are given by

(2.1) I φ κ 1 + F ( τ 1 ) = κ 1 τ 1 φ ( τ 1 ξ ) τ 1 ξ F ( ξ ) d ξ , τ 1 > κ 1 ,

and

(2.2) I φ κ 2 F ( τ 1 ) = τ 1 κ 2 φ ( ξ τ 1 ) ξ τ 1 F ( ξ ) d ξ , τ 1 < κ 2 ,

respectively. Here, the function φ : [ 0 , ) [ 0 , ) satisfies the condition

0 1 φ ( ξ ) ξ d ξ < .

The most important feature of generalized fractional integrals is that they generalize some types of fractional integrals such as Riemann-Liouville fractional integral, k -Riemann-Liouville fractional integral, Katugampola fractional integrals, conformable fractional integral, Hadamard fractional integrals, etc. These important special cases of the integral operators (2.1) and (2.2) are mentioned below.

  1. If we take φ ( ξ ) = ξ , the operators (2.1) and (2.2) reduce to the Riemann integral as follows:

    I κ 1 + F ( τ 1 ) = κ 1 τ 1 F ( ξ ) d ξ , τ 1 > κ 1 , I κ 2 F ( τ 1 ) = τ 1 κ 2 F ( ξ ) d ξ , τ 1 < κ 2 .

  2. If we take φ ( ξ ) = ξ α Γ ( α ) , the operators (2.1) and (2.2) reduce to the Riemann-Liouville fractional integral as follows:

    J κ 1 + α F ( τ 1 ) = 1 Γ ( α ) κ 1 τ 1 ( τ 1 ξ ) α 1 F ( ξ ) d ξ , τ 1 > κ 1 , J κ 2 α F ( τ 1 ) = 1 Γ ( α ) τ 1 κ 2 ( ξ τ 1 ) α 1 F ( ξ ) d ξ , τ 1 < κ 2 .

  3. If we take φ ( ξ ) = 1 k Γ k ( α ) ξ α k , the operators (2.1) and (2.2) reduce to the k -Riemann-Liouville fractional integral as follows:

    J κ 1 + , k α F ( τ 1 ) = 1 k Γ k ( α ) κ 1 τ 1 ( τ 1 ξ ) α k 1 F ( ξ ) d ξ , τ 1 > κ 1 , J κ 2 , k α F ( τ 1 ) = 1 k Γ k ( α ) τ 1 κ 2 ( ξ τ 1 ) α k 1 F ( ξ ) d ξ , τ 1 < κ 2 ,

    where

    Γ k ( α ) = 0 ξ α 1 e ξ k k d ξ , ( α ) > 0

    and

    Γ k ( α ) = k α k 1 Γ α k , ( α ) > 0 ; k > 0

    are given by Mubeen and Habibullah in [39].

In the literature, there are several papers on inequalities for generalized fractional integrals. Some of them please refer to [31,40,41, 42,43,44, 45,46,47].

Inspired by this definition, Turkay et al. [11] give the following definitions:

Definition 3

Let F L 1 ( [ κ 1 , κ 2 ] × [ κ 3 , κ 4 ] ) . The generalized Riemann-Liouville fractional integrals I φ , ψ κ 1 + , κ 3 + , I φ , ψ κ 1 + , κ 4 , I φ , ψ κ 2 , κ 3 + , I φ , ψ κ 2 , κ 4 are defined by

(2.3) I φ , ψ κ 1 + , κ 3 + F ( τ 1 , τ 2 ) = κ 1 τ 1 κ 3 τ 2 φ ( τ 1 ξ ) τ 1 ξ ψ ( τ 2 η ) τ 2 η F ( ξ , η ) d η d ξ , τ 1 > κ 1 , τ 2 > κ 3 ,

(2.4) I φ , ψ κ 1 + , κ 4 F ( τ 1 , τ 2 ) = κ 1 τ 1 τ 2 κ 4 φ ( τ 1 ξ ) τ 1 ξ ψ ( η τ 2 ) η τ 2 F ( ξ , η ) d η d ξ , τ 1 > κ 1 , τ 2 < κ 4 ,

(2.5) I φ , ψ κ 2 , κ 3 + F ( τ 1 , τ 2 ) = τ 1 κ 2 κ 3 τ 2 φ ( ξ τ 1 ) ξ τ 1 ψ ( τ 2 η ) τ 2 η F ( ξ , η ) d η d ξ , τ 1 < κ 2 , τ 2 > κ 3

and

(2.6) I φ , ψ κ 2 , κ 4 F ( τ 1 , τ 2 ) = τ 1 κ 2 τ 2 κ 4 φ ( ξ τ 1 ) ξ τ 1 ψ ( η τ 2 ) η τ 2 F ( ξ , η ) d η d ξ , τ 1 < κ 2 , τ 2 < κ 4 ,

where φ , ψ : [ 0 , ) [ 0 , ) are functions which satisfy 0 1 φ ( ξ ) ξ d ξ < and 0 1 ψ ( η ) η d η < , respectively.

In this definition, known fractional integrals can be obtained by some special choices. For example,

  1. If we take φ ( ξ ) = ξ and ψ ( η ) = η , then the operators (2.3), (2.4), (2.5) and (2.6) transform into the Riemann integrals on coordinates, respectively, as follows:

    I κ 1 + , κ 3 + F ( τ 1 , τ 2 ) = κ 1 τ 1 κ 3 τ 2 F ( ξ , η ) d η d ξ , τ 1 > κ 1 , τ 2 > κ 3 , I κ 1 + , κ 4 F ( τ 1 , τ 2 ) = κ 1 τ 1 τ 2 κ 4 F ( ξ , η ) d η d ξ , τ 1 > κ 1 , τ 2 < κ 4 , I κ 2 , κ 3 + F ( τ 1 , τ 2 ) = τ 1 κ 2 κ 3 τ 2 F ( ξ , η ) d η d ξ , τ 1 < κ 2 , τ 2 > κ 3

    and

    I κ 2 , κ 4 F ( τ 1 , τ 2 ) = τ 1 κ 2 τ 2 κ 4 F ( ξ , η ) d η d ξ , τ 1 < κ 2 , τ 2 < κ 4 .

  2. If we take φ ( ξ ) = ξ α Γ ( α ) , ψ ( η ) = η β Γ ( β ) , then for α , β > 0 the operators (2.3), (2.4), (2.5) and (2.6) transform into the Riemann-Liouville fractional integrals on coordinates [8], respectively, as follows:

    J κ 1 + , κ 3 + α , β F ( τ 1 , τ 2 ) = 1 Γ ( α ) Γ ( β ) κ 1 τ 1 κ 3 τ 2 ( τ 1 ξ ) α 1 ( τ 2 η ) β 1 F ( ξ , η ) d η d ξ , τ 1 > κ 1 , τ 2 > κ 3 , J κ 1 + , κ 4 α , β F ( τ 1 , τ 2 ) = 1 Γ ( α ) Γ ( β ) κ 1 τ 1 τ 2 κ 4 ( τ 1 ξ ) α 1 ( η τ 2 ) β 1 F ( ξ , η ) d η d ξ , τ 1 > κ 1 , τ 2 < κ 4 , J κ 2 , κ 3 + α , β F ( τ 1 , τ 2 ) = 1 Γ ( α ) Γ ( β ) τ 1 κ 2 κ 3 τ 2 ( ξ τ 1 ) α 1 ( τ 2 η ) β 1 F ( ξ , η ) d η d ξ , τ 1 < κ 2 , τ 2 > κ 3

    and

    J κ 2 , κ 4 α , β F ( τ 1 , τ 2 ) = 1 Γ ( α ) Γ ( β ) τ 1 κ 2 τ 2 κ 4 ( ξ τ 1 ) α 1 ( η τ 2 ) β 1 F ( ξ , η ) d η d ξ , τ 1 < κ 2 , τ 2 < κ 4 ,

    where Γ is the gamma function.

  3. If we take φ ( ξ ) = ξ α k k Γ k ( α ) and ψ ( η ) = η β k k Γ k ( β ) , for α , β , k > 0 , then the operators (2.3), (2.4), (2.5) and (2.6) transform into the Riemann-Liouville k -fractional integrals on coordinates [48], respectively, as follows:

    J κ 1 + , κ 3 + α , β , k F ( τ 1 , τ 2 ) = 1 k 2 Γ k ( α ) Γ k ( β ) κ 1 τ 1 κ 3 τ 2 ( τ 1 ξ ) α k 1 ( τ 2 η ) β k 1 F ( ξ , η ) d η d ξ , τ 1 > κ 1 , τ 2 > κ 3 , J κ 1 + , κ 4 α , β , k F ( τ 1 , τ 2 ) = 1 k 2 Γ k ( α ) Γ k ( β ) κ 1 τ 1 τ 2 κ 4 ( τ 1 ξ ) α k 1 ( η τ 2 ) β k 1 F ( ξ , η ) d η d ξ , τ 1 > κ 1 , τ 2 < κ 4 , J κ 2 , κ 3 + α , β , k F ( τ 1 , τ 2 ) = 1 k 2 Γ k ( α ) Γ k ( β ) τ 1 κ 2 κ 3 τ 2 ( ξ τ 1 ) α k 1 ( τ 2 η ) β k 1 F ( ξ , η ) d η d ξ , τ 1 < κ 2 , τ 2 > κ 3

    and

    J κ 2 , κ 4 α , β , k F ( τ 1 , τ 2 ) = 1 k 2 Γ k ( α ) Γ k ( β ) τ 1 κ 2 τ 2 κ 4 ( ξ τ 1 ) α k 1 ( η τ 2 ) β k 1 F ( ξ , η ) d η d ξ , τ 1 < κ 2 , τ 2 < κ 4 ,

    where Γ k is the k -gamma function.

3 An Identity

Throughout this study, for brevity, we define

(3.1) Δ ( ξ ) = 0 ξ φ ( ( κ 2 κ 1 ) u ) u d u , Λ ( η ) = 0 η ψ ( ( κ 4 κ 3 ) u ) u d u .

Now we give an identity for generalized fractional integrals.

Lemma 1

Let F : Δ R be a twice partially differentiable mapping on Δ . If 2 F ξ η L ( Δ ) , then we have the following equality:

Θ ( κ 1 , κ 2 ; κ 3 , κ 4 ) = ( κ 2 κ 1 ) ( κ 4 κ 3 ) 0 1 0 1 w ( ξ , η ) 2 F ξ η ( ξ κ 2 + ( 1 ξ ) κ 1 , η κ 4 + ( 1 η ) κ 3 ) d η d ξ

for all λ i , μ i 0 , i = 1 , 2 , where the mapping w : [ 0 , 1 ] × [ 0 , 1 ] R is defined by

w ( ξ , η ) = ( Δ ( ξ ) Δ ( 1 ) λ 1 ) ( Λ ( η ) Λ ( 1 ) λ 2 ) , 0 ξ 1 2 , 0 η 1 2 , ( Δ ( ξ ) Δ ( 1 ) λ 1 ) ( Λ ( η ) Λ ( 1 ) μ 2 ) , 0 ξ 1 2 , 1 2 η 1 , ( Δ ( ξ ) Δ ( 1 ) μ 1 ) ( Λ ( η ) Λ ( 1 ) λ 2 ) , 1 2 ξ 1 , 0 η 1 2 , ( Δ ( ξ ) Δ ( 1 ) μ 1 ) ( Λ ( η ) Λ ( 1 ) μ 2 ) , 1 2 ξ 1 , 1 2 η 1

and

Θ ( κ 1 , κ 2 ; κ 3 , κ 4 ) = Δ ( 1 ) ( μ 1 λ 1 ) Λ ( 1 ) ( μ 2 λ 2 ) F κ 1 + κ 2 2 , κ 3 + κ 4 2 + Δ ( 1 ) λ 1 Λ ( 1 ) ( μ 2 λ 2 ) F κ 1 , κ 3 + κ 4 2 + Δ ( 1 ) ( 1 μ 1 ) Λ ( 1 ) ( μ 2 λ 2 ) F κ 2 , κ 3 + κ 4 2 + Δ ( 1 ) ( μ 1 λ 1 ) Λ ( 1 ) λ 2 F κ 1 + κ 2 2 , κ 3 + Δ ( 1 ) ( μ 1 λ 1 ) Λ ( 1 ) ( 1 μ 2 ) F κ 1 + κ 2 2 , κ 4 + Δ ( 1 ) λ 1 Λ ( 1 ) λ 2 F ( κ 1 , κ 3 ) + Δ ( 1 ) ( 1 μ 1 ) Λ ( 1 ) λ 2 F ( κ 2 , κ 3 ) + Δ ( 1 ) λ 1 Λ ( 1 ) ( 1 μ 2 ) F ( κ 1 , κ 4 ) + Δ ( 1 ) ( 1 μ 1 ) Λ ( 1 ) ( 1 μ 2 ) F ( κ 2 , κ 4 ) Λ ( 1 ) ( μ 2 λ 2 ) I φ κ 1 + κ 2 2 F κ 1 , κ 3 + κ 4 2 + I φ κ 1 + κ 2 2 + F κ 2 , κ 3 + κ 4 2 Δ ( 1 ) ( μ 1 λ 1 ) I ψ κ 3 + κ 4 2 F κ 1 + κ 2 2 , κ 3 + I ψ κ 3 + κ 4 2 + F κ 1 + κ 2 2 , κ 4 Δ ( 1 ) λ 1 I ψ κ 3 + κ 4 2 F ( κ 1 , κ 3 ) + I ψ κ 3 + κ 4 2 + F ( κ 1 , κ 4 ) Λ ( 1 ) λ 2 I φ κ 1 + κ 2 2 F ( κ 1 , κ 3 ) + I φ κ 1 + κ 2 2 + F ( κ 2 , κ 3 ) Λ ( 1 ) ( 1 μ 2 ) I φ κ 1 + κ 2 2 F ( κ 1 , κ 4 ) + I φ κ 1 + κ 2 2 + F ( κ 2 , κ 4 ) Δ ( 1 ) ( 1 μ 1 ) I ψ κ 3 + κ 4 2 F ( κ 2 , κ 3 ) + I ψ κ 3 + κ 4 2 + F ( κ 2 , κ 4 ) + I φ , ψ κ 1 + κ 2 2 κ 3 + κ 4 2 F ( κ 1 , κ 3 ) + I φ , ψ κ 1 + κ 2 2 κ 3 + κ 4 2 + F ( κ 1 , κ 4 ) + I φ , ψ κ 1 + κ 2 2 + κ 3 + κ 4 2 F ( κ 2 , κ 3 ) + I φ , ψ κ 1 + κ 2 2 + κ 3 + κ 4 2 + F ( κ 2 , κ 4 ) .

Proof

From the definition of the mapping w ( ξ , η ) , we have

( κ 2 κ 1 ) ( κ 4 κ 3 ) 0 1 0 1 w ( ξ , η ) 2 F ξ η ( ξ κ 2 + ( 1 ξ ) κ 1 , η κ 4 + ( 1 η ) κ 3 ) d η d ξ = ( κ 2 κ 1 ) ( κ 4 κ 3 ) 0 1 2 0 1 2 ( Δ ( ξ ) Δ ( 1 ) λ 1 ) ( Λ ( η ) Λ ( 1 ) λ 2 ) 2 F ξ η ( ξ κ 2 + ( 1 ξ ) κ 1 , η κ 4 + ( 1 η ) κ 3 ) d ξ d η + 0 1 2 1 2 1 ( Δ ( ξ ) Δ ( 1 ) λ 1 ) ( Λ ( η ) Λ ( 1 ) μ 2 ) 2 F ξ η ( ξ κ 2 + ( 1 ξ ) κ 1 , η κ 4 + ( 1 η ) κ 3 ) d ξ d η

+ 1 2 1 0 1 2 ( Δ ( ξ ) Δ ( 1 ) μ 1 ) ( Λ ( η ) Λ ( 1 ) λ 2 ) 2 F ξ η ( ξ κ 2 + ( 1 ξ ) κ 1 , η κ 4 + ( 1 η ) κ 3 ) d ξ d η + 1 2 1 1 2 1 ( Δ ( ξ ) Δ ( 1 ) μ 1 ) ( Λ ( η ) Λ ( 1 ) μ 2 ) 2 F ξ η ( ξ κ 2 + ( 1 ξ ) κ 1 , η κ 4 + ( 1 η ) κ 3 ) d ξ d η = ( κ 2 κ 1 ) ( κ 4 κ 3 ) [ J 1 + J 2 + J 3 + J 4 ] .

Integrating by parts, one can easily obtain

J 1 = 0 1 2 0 1 2 ( Δ ( ξ ) Δ ( 1 ) λ 1 ) ( Λ ( η ) Λ ( 1 ) λ 2 ) 2 F ξ η ( ξ κ 2 + ( 1 ξ ) κ 1 , η κ 4 + ( 1 η ) κ 3 ) d ξ d η = 1 ( κ 2 κ 1 ) ( κ 4 κ 3 ) Δ 1 2 Δ ( 1 ) λ 1 Λ 1 2 Λ ( 1 ) λ 2 F κ 1 + κ 2 2 , κ 3 + κ 4 2 + Δ ( 1 ) λ 1 Λ 1 2 Λ ( 1 ) λ 2 F κ 1 , κ 3 + κ 4 2 Λ 1 2 Λ ( 1 ) λ 2 × κ 1 κ 1 + κ 2 2 F τ 1 , κ 3 + κ 4 2 φ ( τ 1 κ 1 ) τ 1 κ 1 d τ 1 + Δ 1 2 Δ ( 1 ) λ 1 Λ ( 1 ) λ 2 F κ 1 + κ 2 2 , κ 3 + Δ ( 1 ) λ 1 Λ ( 1 ) λ 2 F ( κ 1 , κ 3 ) Λ ( 1 ) λ 2 0 κ 1 + κ 2 2 φ ( τ 1 κ 1 ) τ 1 κ 1 F ( τ 1 , κ 3 ) d τ 1 Δ 1 2 Δ ( 1 ) λ 1 × κ 3 κ 3 + κ 4 2 F κ 1 + κ 2 2 , τ 2 ψ ( τ 2 κ 3 ) τ 2 κ 3 d τ 2 Δ ( 1 ) λ 1 κ 3 κ 3 + κ 4 2 F ( κ 1 , τ 2 ) ψ ( τ 2 κ 3 ) τ 2 κ 3 d τ 2 + κ 1 κ 1 + κ 2 2 κ 3 κ 3 + κ 4 2 F ( τ 1 , τ 2 ) φ ( τ 1 κ 1 ) τ 1 κ 1 ψ ( τ 2 κ 3 ) τ 2 κ 3 d τ 2 d τ 1 .

Hence, we obtain

(3.2) J 1 = 0 1 2 0 1 2 ( Δ ( ξ ) Δ ( 1 ) λ 1 ) ( Λ ( η ) Λ ( 1 ) λ 2 ) 2 F ξ η ( ξ κ 2 + ( 1 ξ ) κ 1 , η κ 4 + ( 1 η ) κ 3 ) d ξ d η = 1 ( κ 2 κ 1 ) ( κ 4 κ 3 ) Δ 1 2 Δ ( 1 ) λ 1 Λ 1 2 Λ ( 1 ) λ 2 F κ 1 + κ 2 2 , κ 3 + κ 4 2 + Δ ( 1 ) λ 1 Λ 1 2 Λ ( 1 ) λ 2 F κ 1 , κ 3 + κ 4 2 Λ 1 2 Λ ( 1 ) λ 2 I φ κ 1 + κ 2 2 F κ 1 , κ 3 + κ 4 2 + Δ 1 2 Δ ( 1 ) λ 1 Λ ( 1 ) λ 2 F κ 1 + κ 2 2 , κ 3 + Δ ( 1 ) λ 1 Λ ( 1 ) λ 2 F ( κ 1 , κ 3 ) Λ ( 1 ) λ 2 κ 1 + κ 2 2 I φ F ( κ 1 , κ 3 ) Δ 1 2 Δ ( 1 ) λ 1 I ψ κ 3 + κ 4 2 F κ 1 + κ 2 2 , κ 3 Δ ( 1 ) λ 1 κ 3 + κ 4 2 I ψ F ( κ 1 , κ 3 ) + I φ , ψ κ 1 + κ 2 2 κ 3 + κ 4 2 F ( κ 1 , κ 3 ) .

Similarly, we get

(3.3) J 2 = 0 1 2 1 2 1 ( Δ ( ξ ) Δ ( 1 ) λ 1 ) ( Λ ( η ) Λ ( 1 ) μ 2 ) 2 F ξ η ( ξ κ 2 + ( 1 ξ ) κ 1 , η κ 4 + ( 1 η ) κ 3 ) d ξ d η = 1 ( κ 2 κ 1 ) ( κ 4 κ 3 ) Δ 1 2 Δ ( 1 ) λ 1 ( Λ ( 1 ) Λ ( 1 ) μ 2 ) F κ 1 + κ 2 2 , κ 4 + Δ ( 1 ) λ 1 ( Λ ( 1 ) Λ ( 1 ) μ 2 ) F ( κ 1 , κ 4 ) ( Λ ( 1 ) Λ ( 1 ) ) μ 2 I φ κ 1 + κ 2 2 F ( κ 1 , κ 4 ) Δ 1 2 Δ ( 1 ) λ 1 Λ 1 2 Λ ( 1 ) μ 2 F κ 1 + κ 2 2 , κ 3 + κ 4 2 Δ ( 1 ) λ 1 Λ 1 2 Λ ( 1 ) μ 2 F κ 1 , κ 3 + κ 4 2 + Λ 1 2 Λ ( 1 ) μ 2 I φ κ 1 + κ 2 2 F κ 1 , κ 3 + κ 4 2 Δ 1 2 Δ ( 1 ) λ 1 I ψ κ 3 + κ 4 2 + F κ 1 + κ 2 2 , κ 4 Δ ( 1 ) λ 1 I ψ κ 3 + κ 4 2 + F ( κ 1 , κ 4 ) + I φ , ψ κ 1 + κ 2 2 κ 3 + κ 4 2 + F ( κ 1 , κ 4 ) ,

(3.4) J 3 = 1 2 1 0 1 2 ( Δ ( ξ ) Δ ( 1 ) μ 1 ) ( Λ ( η ) Λ ( 1 ) λ 2 ) 2 F ξ η ( ξ κ 2 + ( 1 ξ ) κ 1 , η κ 4 + ( 1 η ) κ 3 ) d ξ d η = 1 ( κ 2 κ 1 ) ( κ 4 κ 3 ) ( Δ ( 1 ) Δ ( 1 ) μ 1 ) Λ 1 2 Λ ( 1 ) λ 2 F κ 2 , κ 3 + κ 4 2 Δ 1 2 Δ ( 1 ) μ 1 Λ 1 2 Λ ( 1 ) λ 2 F κ 1 + κ 2 2 , κ 3 + κ 4 2 Λ 1 2 Λ ( 1 ) λ 2 I φ κ 1 + κ 2 2 + F κ 2 , κ 3 + κ 4 2 + ( Δ ( 1 ) Δ ( 1 ) μ 1 ) Λ ( 1 ) λ 2 F ( κ 2 , κ 3 ) Δ 1 2 Δ ( 1 ) μ 1 Λ ( 1 ) λ 2 F κ 1 + κ 2 2 , κ 3 Λ ( 1 ) λ 2 I φ κ 1 + κ 2 2 + F ( κ 2 , κ 3 ) ( Δ ( 1 ) Δ ( 1 ) μ 1 ) I ψ κ 3 + κ 4 2 F ( κ 2 , κ 3 ) + Δ 1 2 Δ ( 1 ) μ 1 I ψ κ 3 + κ 4 2 F κ 1 + κ 2 2 , κ 3 + I φ , ψ κ 1 + κ 2 2 + κ 3 + κ 4 2 F ( κ 2 , κ 3 )

and

(3.5) J 4 = 1 2 1 1 2 1 ( Δ ( ξ ) Δ ( 1 ) μ 1 ) ( Λ ( η ) Λ ( 1 ) μ 2 ) 2 F ξ η ( ξ κ 2 + ( 1 ξ ) κ 1 , η κ 4 + ( 1 η ) κ 3 ) d ξ d η = 1 ( κ 2 κ 1 ) ( κ 4 κ 3 ) [ ( Δ ( 1 ) Δ ( 1 ) μ 1 ) ( Λ ( 1 ) Λ ( 1 ) μ 2 ) F ( κ 2 , κ 4 ) Δ 1 2 Δ ( 1 ) μ 1 ( Λ ( 1 ) Λ ( 1 ) μ 2 ) F κ 1 + κ 2 2 , κ 4 ( Λ ( 1 ) Λ ( 1 ) μ 2 ) κ 1 + κ 2 2 + I φ F ( κ 2 , κ 4 ) ( Δ ( 1 ) Δ ( 1 ) μ 1 ) Λ 1 2 Λ ( 1 ) μ 2 F κ 2 , κ 3 + κ 4 2 + Δ 1 2 Δ ( 1 ) μ 1 Λ 1 2 Λ ( 1 ) μ 2 F κ 1 + κ 2 2 , κ 3 + κ 4 2 + Λ 1 2 Λ ( 1 ) μ 2 I φ κ 1 + κ 2 2 + F κ 2 , κ 3 + κ 4 2 ( Δ ( 1 ) Δ ( 1 ) μ 1 ) I ψ κ 3 + κ 4 2 + F ( κ 2 , κ 4 ) + Δ 1 2 Δ ( 1 ) μ 1 I ψ κ 3 + κ 4 2 + F κ 1 + κ 2 2 , κ 4 + I φ , ψ κ 1 + κ 2 2 + κ 3 + κ 4 2 + F ( κ 2 , κ 4 ) .

By the equalities (3.2)–(3.5), we have

( κ 2 κ 1 ) ( κ 4 κ 3 ) [ J 1 + J 2 + J 3 + J 4 ] = ( Δ ( 1 ) μ 1 Δ ( 1 ) λ 1 ) ( Λ ( 1 ) μ 2 Λ ( 1 ) λ 2 ) F κ 1 + κ 2 2 , κ 3 + κ 4 2 + Δ ( 1 ) λ 1 ( Λ ( 1 ) μ 2 Λ ( 1 ) λ 2 ) F κ 1 , κ 3 + κ 4 2 + ( Δ ( 1 ) Δ ( 1 ) μ 1 ) ( Λ ( 1 ) μ 2 Λ ( 1 ) λ 2 ) F κ 2 , κ 3 + κ 4 2 + ( Δ ( 1 ) μ 1 Δ ( 1 ) λ 1 ) Λ ( 1 ) λ 2 F κ 1 + κ 2 2 , κ 3 + ( Δ ( 1 ) μ 1 Δ ( 1 ) λ 1 ) ( Λ ( 1 ) Λ ( 1 ) μ 2 ) F κ 1 + κ 2 2 , κ 4 + Δ ( 1 ) λ 1 Λ ( 1 ) λ 2 F ( κ 1 , κ 3 ) + ( Δ ( 1 ) Δ ( 1 ) μ 1 ) Λ ( 1 ) λ 2 F ( κ 2 , κ 3 ) + Δ ( 1 ) λ 1 ( Λ ( 1 ) Λ ( 1 ) μ 2 ) F ( κ 1 , κ 4 ) + ( Δ ( 1 ) Δ ( 1 ) μ 1 ) ( Λ ( 1 ) Λ ( 1 ) μ 2 ) F ( κ 2 , κ 4 ) ( Λ ( 1 ) μ 2 Λ ( 1 ) λ 2 ) I φ κ 1 + κ 2 2 F κ 1 , κ 3 + κ 4 2 + I φ κ 1 + κ 2 2 + F κ 2 , κ 3 + κ 4 2 ( Δ ( 1 ) μ 1 Δ ( 1 ) λ 1 ) I ψ κ 3 + κ 4 2 F κ 1 + κ 2 2 , κ 3 + I ψ κ 3 + κ 4 2 + F κ 1 + κ 2 2 , κ 4 Δ ( 1 ) λ 1 I ψ κ 3 + κ 4 2 F ( κ 1 , κ 3 ) + I ψ κ 3 + κ 4 2 + F ( κ 1 , κ 4 ) Λ ( 1 ) λ 2 I φ κ 1 + κ 2 2 F ( κ 1 , κ 3 ) + I φ κ 1 + κ 2 2 + F ( κ 2 , κ 3 ) ( Λ ( 1 ) Λ ( 1 ) μ 2 ) I φ κ 1 + κ 2 2 F ( κ 1 , κ 4 ) + I φ κ 1 + κ 2 2 + F ( κ 2 , κ 4 ) ( Δ ( 1 ) Δ ( 1 ) μ 1 ) I ψ κ 3 + κ 4 2 + F ( κ 2 , κ 3 ) + I ψ κ 3 + κ 4 2 F ( κ 2 , κ 4 ) + I φ , ψ κ 1 + κ 2 2 κ 3 + κ 4 2 F ( κ 1 , κ 3 ) + I φ , ψ κ 1 + κ 2 2 κ 3 + κ 4 2 + F ( κ 1 , κ 4 ) + I φ , ψ κ 1 + κ 2 2 + κ 3 + κ 4 2 F ( κ 2 , κ 3 ) + I φ , ψ κ 1 + κ 2 2 + κ 3 + κ 4 2 + F ( κ 2 , κ 4 ) .

which completes the proof.□

Remark 1

If we assume φ ( ξ ) = ξ and ψ ( η ) = η in Lemma 1, we obtain,

Φ ( κ 1 , κ 2 ; κ 3 , κ 4 ) = ( κ 2 κ 1 ) ( κ 4 κ 3 ) 0 1 2 0 1 2 ( ξ λ 1 ) ( η λ 2 ) 2 F ξ η ( ξ κ 2 + ( 1 ξ ) κ 1 , η κ 4 + ( 1 η ) κ 3 ) d ξ d η + ( κ 2 κ 1 ) ( κ 4 κ 3 ) 0 1 2 1 2 1 ( ξ λ 1 ) ( η μ 2 ) 2 F ξ η ( ξ κ 2 + ( 1 ξ ) κ 1 , η κ 4 + ( 1 η ) κ 3 ) d ξ d η + ( κ 2 κ 1 ) ( κ 4 κ 3 ) 1 2 1 0 1 2 ( ξ μ 1 ) ( η λ 2 ) 2 F ξ η ( ξ κ 2 + ( 1 ξ ) κ 1 , η κ 4 + ( 1 η ) κ 3 ) d ξ d η + ( κ 2 κ 1 ) ( κ 4 κ 3 ) 1 2 1 1 2 1 ( ξ μ 1 ) ( η μ 2 ) 2 F ξ η ( ξ κ 2 + ( 1 ξ ) κ 1 , η κ 4 + ( 1 η ) κ 3 ) d ξ d η ,

where

Φ ( κ 1 , κ 2 ; κ 3 , κ 4 ) = ( μ 1 λ 1 ) ( μ 2 λ 2 ) F κ 1 + κ 2 2 , κ 3 + κ 4 2 + λ 1 ( μ 2 λ 2 ) F κ 1 , κ 3 + κ 4 2 + ( 1 μ 1 ) ( μ 2 λ 2 ) F κ 2 , κ 3 + κ 4 2 + ( μ 1 λ 1 ) λ 2 F κ 1 + κ 2 2 , κ 3 + ( μ 1 λ 1 ) ( 1 μ 2 ) F κ 1 + κ 2 2 , κ 4 + λ 1 λ 2 F ( κ 1 , κ 3 ) + ( 1 μ 1 ) λ 2 F ( κ 2 , κ 3 ) + λ 1 ( 1 μ 2 ) F ( κ 1 , κ 4 ) + ( 1 μ 1 ) ( 1 μ 2 ) F ( κ 2 , κ 4 )

λ 2 κ 2 κ 1 κ 1 κ 2 F ( τ 1 , κ 3 ) d τ 1 μ 2 λ 2 κ 2 κ 1 κ 1 κ 2 F τ 1 , κ 3 + κ 4 2 d τ 1 1 μ 2 κ 2 κ 1 κ 1 κ 2 F ( τ 1 , κ 4 ) d τ 1 λ 1 κ 4 κ 3 κ 3 κ 4 F ( κ 1 , τ 2 ) d τ 2 μ 1 λ 1 κ 4 κ 3 κ 3 κ 4 F κ 1 + κ 2 2 , τ 2 d τ 2 1 μ 1 κ 4 κ 3 κ 3 κ 4 F ( κ 2 , τ 2 ) d τ 2 + 1 ( κ 2 κ 1 ) ( κ 4 κ 3 ) κ 1 κ 2 κ 3 κ 4 F ( τ 1 , τ 2 ) d τ 2 d τ 1 ,

which is given by Budak and Ali in [49].

Corollary 1

In Lemma 1, if we set φ ( ξ ) = ξ α Γ ( α ) and ψ ( η ) = ξ β Γ ( β ) , then we obtain the following new Riemann-Liouville fractional integral identity:

Ω ( κ 1 , κ 2 ; κ 3 , κ 4 ) = ( κ 2 κ 1 ) ( κ 4 κ 3 ) 0 1 2 0 1 2 ( ξ α λ 1 ) ( η β λ 2 ) 2 F ξ η ( ξ κ 2 + ( 1 ξ ) κ 1 , η κ 4 + ( 1 η ) κ 3 ) d ξ d η + ( κ 2 κ 1 ) ( κ 4 κ 3 ) 0 1 2 1 2 1 ( ξ α λ 1 ) ( η β μ 2 ) 2 F ξ η ( ξ κ 2 + ( 1 ξ ) κ 1 , η κ 4 + ( 1 η ) κ 3 ) d ξ d η + ( κ 2 κ 1 ) ( κ 4 κ 3 ) 1 2 1 0 1 2 ( ξ α μ 1 ) ( η β λ 2 ) 2 F ξ η ( ξ κ 2 + ( 1 ξ ) κ 1 , η κ 4 + ( 1 η ) κ 3 ) d ξ d η + ( κ 2 κ 1 ) ( κ 4 κ 3 ) 1 2 1 1 2 1 ( ξ α μ 1 ) ( η β μ 2 ) 2 F ξ η ( ξ κ 2 + ( 1 ξ ) κ 1 , η κ 4 + ( 1 η ) κ 3 ) d ξ d η ,

where

Ω ( κ 1 , κ 2 ; κ 3 , κ 4 ) = ( μ 1 λ 1 ) ( μ 2 λ 2 ) F κ 1 + κ 2 2 , κ 3 + κ 4 2 + λ 1 ( μ 2 λ 2 ) F κ 1 , κ 3 + κ 4 2 + ( 1 μ 1 ) ( μ 2 λ 2 ) F κ 2 , κ 3 + κ 4 2 + ( μ 1 λ 1 ) λ 2 F κ 1 + κ 2 2 , κ 3 + ( μ 1 λ 1 ) ( 1 μ 2 ) F κ 1 + κ 2 2 , κ 4 + λ 1 λ 2 F ( κ 1 , κ 3 ) + ( 1 μ 1 ) λ 2 F ( κ 2 , κ 3 ) + λ 1 ( 1 μ 2 ) F ( κ 1 , κ 4 ) + ( 1 μ 1 ) ( 1 μ 2 ) F ( κ 2 , κ 4 ) ( μ 2 λ 2 ) Γ ( α + 1 ) ( κ 2 κ 1 ) α J κ 1 + κ 2 2 α F κ 1 , κ 3 + κ 4 2 + J κ 1 + κ 2 2 + α F κ 2 , κ 3 + κ 4 2 ( μ 1 λ 1 ) Γ ( β + 1 ) ( κ 4 κ 3 ) β J κ 3 + κ 4 2 β F κ 1 + κ 2 2 , κ 3 + J κ 3 + κ 4 2 + β F κ 1 + κ 2 2 , κ 4 λ 1 Γ ( β + 1 ) ( κ 4 κ 3 ) β J κ 3 + κ 4 2 β F ( κ 1 , κ 3 ) + J κ 3 + κ 4 2 + β F ( κ 1 , κ 4 ) λ 2 Γ ( α + 1 ) ( κ 2 κ 1 ) α J κ 1 + κ 2 2 α F ( κ 1 , κ 3 ) + J κ 1 + κ 2 2 + α F ( κ 2 , κ 3 ) ( 1 μ 2 ) Γ ( α + 1 ) ( κ 2 κ 1 ) α J κ 1 + κ 2 2 α F ( κ 1 , κ 4 ) + J κ 1 + κ 2 2 + α F ( κ 2 , κ 4 ) ( 1 μ 1 ) Γ ( β + 1 ) ( κ 4 κ 3 ) β J κ 3 + κ 4 2 β F ( κ 2 , κ 3 ) + J κ 3 + κ 4 2 + β F ( κ 2 , κ 4 ) + Γ ( α + 1 ) ( κ 2 κ 1 ) α Γ ( β + 1 ) ( κ 4 κ 3 ) β J κ 1 + κ 2 2 κ 3 + κ 4 2 α , β F ( κ 1 , κ 3 ) + J κ 1 + κ 2 2 κ 3 + κ 4 2 + α , β F ( κ 1 , κ 4 ) + J κ 1 + κ 2 2 + κ 3 + κ 4 2 α , β F ( κ 2 , κ 3 ) + J κ 1 + κ 2 2 + κ 3 + κ 4 2 + α , β F ( κ 2 , κ 4 ) ,

where Ω ( κ 1 , κ 2 ; κ 3 , κ 4 ) is defined as in Corollary 1.

Corollary 2

In Lemma 1, if we set φ ( ξ ) = ξ α k k Γ k ( α ) and ψ ( η ) = ξ β k k Γ k ( β ) , then we obtain the following new k -Riemann-Liouville fractional integral identity:

( κ 1 , κ 2 ; κ 3 , κ 4 ) = ( κ 2 κ 1 ) ( κ 4 κ 3 ) 0 1 2 0 1 2 ξ α k λ 1 η β k λ 2 2 F ξ η ( ξ κ 2 + ( 1 ξ ) κ 1 , η κ 4 + ( 1 η ) κ 3 ) d ξ d η + ( κ 2 κ 1 ) ( κ 4 κ 3 ) 0 1 2 1 2 1 ξ α k λ 1 η β k μ 2 2 F ξ η ( ξ κ 2 + ( 1 ξ ) κ 1 , η κ 4 + ( 1 η ) κ 3 ) d ξ d η + ( κ 2 κ 1 ) ( κ 4 κ 3 ) 1 2 1 0 1 2 ξ α k μ 1 η β k λ 2 2 F ξ η ( ξ κ 2 + ( 1 ξ ) κ 1 , η κ 4 + ( 1 η ) κ 3 ) d ξ d η + ( κ 2 κ 1 ) ( κ 4 κ 3 ) 1 2 1 1 2 1 ξ α k μ 1 η β k μ 2 2 F ξ η ( ξ κ 2 + ( 1 ξ ) κ 1 , η κ 4 + ( 1 η ) κ 3 ) d ξ d η ,

where

( κ 1 , κ 2 ; κ 3 , κ 4 ) = ( μ 1 λ 1 ) ( μ 2 λ 2 ) F κ 1 + κ 2 2 , κ 3 + κ 4 2 + λ 1 ( μ 2 λ 2 ) F κ 1 , κ 3 + κ 4 2 + ( 1 μ 1 ) ( μ 2 λ 2 ) F κ 2 , κ 3 + κ 4 2 + ( μ 1 λ 1 ) λ 2 F κ 1 + κ 2 2 , κ 3 + ( μ 1 λ 1 ) ( 1 μ 2 ) F κ 1 + κ 2 2 , κ 4 + λ 1 λ 2 F ( κ 1 , κ 3 ) + ( 1 μ 1 ) λ 2 F ( κ 2 , κ 3 ) + λ 1 ( 1 μ 2 ) F ( κ 1 , κ 4 ) + ( 1 μ 1 ) ( 1 μ 2 ) F ( κ 2 , κ 4 ) ( μ 2 λ 2 ) Γ k ( α + 1 ) ( κ 2 κ 1 ) α k J κ 1 + κ 2 2 , k α F κ 1 , κ 3 + κ 4 2 + J κ 1 + κ 2 2 + , k α F κ 2 , κ 3 + κ 4 2 ( μ 1 λ 1 ) Γ k ( β + 1 ) ( κ 4 κ 3 ) β k J κ 3 + κ 4 2 , k β F κ 1 + κ 2 2 , κ 3 + J κ 3 + κ 4 2 + , k β F κ 1 + κ 2 2 , κ 4 λ 1 Γ k ( β + 1 ) ( κ 4 κ 3 ) β J κ 3 + κ 4 2 , k β F ( κ 1 , κ 3 ) + J κ 3 + κ 4 2 + , k β F ( κ 1 , κ 4 ) λ 2 Γ k ( α + 1 ) ( κ 2 κ 1 ) α J κ 1 + κ 2 2 , k α F ( κ 1 , κ 3 ) + J κ 1 + κ 2 2 + , k α F ( κ 2 , κ 3 ) ( 1 μ 2 ) Γ k ( α + 1 ) ( κ 2 κ 1 ) α k J κ 1 + κ 2 2 , k α F ( κ 1 , κ 4 ) + J κ 1 + κ 2 2 + , k α F ( κ 2 , κ 4 ) ( 1 μ 1 ) Γ k ( β + 1 ) ( κ 4 κ 3 ) β k J κ 3 + κ 4 2 , k β F ( κ 2 , κ 3 ) + J κ 3 + κ 4 2 + , k β F ( κ 2 , κ 4 ) + Γ k ( α + 1 ) ( κ 2 κ 1 ) α k Γ k ( β + 1 ) ( κ 4 κ 3 ) β k J κ 1 + κ 2 2 κ 3 + κ 4 2 α , β , k F ( κ 1 , κ 3 ) + J κ 1 + κ 2 2 κ 3 + κ 4 2 + α , β , k F ( κ 1 , κ 4 ) + J κ 1 + κ 2 2 + κ 3 + κ 4 2 α , β , k F ( κ 2 , κ 3 ) + J κ 1 + κ 2 2 + κ 3 + κ 4 2 + α , β , k F ( κ 2 , κ 4 ) ,

where ( κ 1 , κ 2 ; κ 3 , κ 4 ) is defined as in Corollary 2.

4 Some new inequalities for generalized fractional integrals

In this section, we establish some new Simpson-type inequalities for differentiable co-ordinated convex functions via generalized fractional integrals.

Theorem 2

We assume that the conditions of Lemma 1 hold. If the mapping 2 F ξ η is co-ordinated convex on [ κ 1 , κ 2 ] , then the following inequality holds for generalized fractional integrals:

(4.1) Θ ( κ 1 , κ 2 ; κ 3 , κ 4 ) ( κ 2 κ 1 ) ( κ 4 κ 3 ) × 2 F ξ η ( κ 2 , κ 4 ) ( Π 1 φ ( λ 1 ) 1 ψ ( λ 2 ) + Π 1 φ ( λ 1 ) 3 ψ ( μ 2 ) + Π 3 φ ( μ 1 ) 1 ψ ( λ 2 ) + Π 3 φ ( μ 1 ) 3 ψ ( μ 2 ) ) + 2 F ξ η ( κ 2 , κ 3 ) ( Π 1 φ ( λ 1 ) 2 ψ ( λ 2 ) + Π 1 φ ( λ 1 ) 4 ψ ( μ 2 ) + Π 3 φ ( μ 1 ) 2 ψ ( λ 2 ) + Π 3 φ ( μ 1 ) 4 ψ ( μ 2 ) ) + 2 F ξ η ( κ 1 , κ 4 ) ( Π 2 φ ( λ 1 ) 1 ψ ( λ 2 ) + Π 2 φ ( λ 1 ) 3 ψ ( μ 2 ) + Π 4 φ ( μ 1 ) 1 ψ ( λ 2 ) + Π 4 φ ( μ 1 ) 3 ψ ( μ 2 ) ) + 2 F ξ η ( κ 1 , κ 3 ) ( Π 2 φ ( λ 1 ) 2 ψ ( λ 2 ) + Π 2 φ ( λ 1 ) 4 ψ ( μ 2 ) + Π 4 φ ( μ 1 ) 2 ψ ( λ 2 ) + Π 4 φ ( μ 1 ) 4 ψ ( μ 2 ) ) ,

where

(4.2) Π 1 φ ( λ 1 ) = 0 1 2 ξ Δ ( ξ ) Δ ( 1 ) λ 1 d ξ , Π 2 φ ( λ 1 ) = 0 1 2 ( 1 ξ ) Δ ( ξ ) Δ ( 1 ) λ 1 d ξ , Π 3 φ ( μ 1 ) = 1 2 1 ξ Δ ( ξ ) Δ ( 1 ) μ 1 d ξ , Π 4 φ ( μ 1 ) = 1 2 1 ( 1 ξ ) Δ ( ξ ) Δ ( 1 ) μ 1 d ξ , 1 ψ ( λ 2 ) = 0 1 2 η Λ ( η ) Λ ( 1 ) λ 2 d η , 2 ψ ( λ 2 ) = 0 1 2 ( 1 η ) Λ ( η ) Λ ( 1 ) λ 2 d η , 3 ψ ( μ 2 ) = 1 2 1 η Λ ( η ) Λ ( 1 ) μ 2 d η , 4 ψ ( μ 2 ) = 1 2 1 ( 1 η ) Λ ( η ) Λ ( 1 ) μ 2 d η .

Proof

By taking the modulus in Lemma 1 and using the properties of the modulus, we obtain that

(4.3) Θ ( κ 1 , κ 2 ; κ 3 , κ 4 ) ( κ 2 κ 1 ) ( κ 4 κ 3 ) × 0 1 2 0 1 2 Δ ( ξ ) Δ ( 1 ) λ 1 Λ ( η ) Λ ( 1 ) λ 2 2 F ξ η ( ξ κ 2 + ( 1 ξ ) κ 1 , η κ 4 + ( 1 η ) κ 3 ) d ξ d η + 0 1 2 1 2 1 Δ ( ξ ) Δ ( 1 ) λ 1 Λ ( η ) Λ ( 1 ) μ 2 2 F ξ η ( ξ κ 2 + ( 1 ξ ) κ 1 , η κ 4 + ( 1 η ) κ 3 ) d ξ d η + 1 2 1 0 1 2 Δ ( ξ ) Δ ( 1 ) μ 1 Λ ( η ) Λ ( 1 ) λ 2 2 F ξ η ( ξ κ 2 + ( 1 ξ ) κ 1 , η κ 4 + ( 1 η ) κ 3 ) d ξ d η + 1 2 1 1 2 1 Δ ( ξ ) Δ ( 1 ) μ 1 Λ ( η ) Λ ( 1 ) μ 2 2 F ξ η ( ξ κ 2 + ( 1 ξ ) κ 1 , η κ 4 + ( 1 η ) κ 3 ) d ξ d η .

Since the mapping 2 F ξ η is co-ordinated convex on Δ , therefore, we have

(4.4) 0 1 2 0 1 2 Δ ( ξ ) Δ ( 1 ) λ 1 Λ ( η ) Λ ( 1 ) λ 2 2 F ξ η ( ξ κ 2 + ( 1 ξ ) κ 1 , η κ 4 + ( 1 η ) κ 3 ) d ξ d η 0 1 2 0 1 2 Δ ( ξ ) Δ ( 1 ) λ 1 Λ ( η ) Λ ( 1 ) λ 2 ξ η 2 F ξ η ( κ 2 , κ 4 ) + ξ ( 1 η ) 2 F ξ η ( κ 2 , κ 3 ) + ( 1 ξ ) η 2 F ξ η ( κ 1 , κ 4 ) + ( 1 ξ ) ( 1 η ) 2 F ξ η ( κ 1 , κ 3 ) d ξ d η = Π 1 φ ( λ 1 ) 1 ψ ( λ 2 ) 2 F ξ η ( κ 2 , κ 4 ) + Π 1 φ ( λ 1 ) 2 ψ ( λ 2 ) 2 F ξ η ( κ 2 , κ 3 ) + Π 2 φ ( λ 1 ) 1 ψ ( λ 2 ) 2 F ξ η ( κ 1 , κ 4 ) + Π 2 φ ( λ 1 ) 2 ψ ( λ 2 ) 2 F ξ η ( κ 1 , κ 3 ) .

Similarly, we obtain

(4.5) 0 1 2 1 2 1 Δ ( ξ ) Δ ( 1 ) λ 1 Λ ( η ) Λ ( 1 ) μ 2 2 F ξ η ( ξ κ 2 + ( 1 ξ ) κ 1 , η κ 4 + ( 1 η ) κ 3 ) d ξ d η = Π 1 φ ( λ 1 ) 3 ψ ( μ 2 ) 2 F ξ η ( κ 2 , κ 4 ) + Π 1 φ ( λ 1 ) 4 ψ ( μ 2 ) 2 F ξ η ( κ 2 , κ 3 ) + Π 2 φ ( λ 1 ) 3 ψ ( μ 2 ) 2 F ξ η ( κ 1 , κ 4 ) + Π 2 φ ( λ 1 ) 4 ψ ( μ 2 ) 2 F ξ η ( κ 1 , κ 3 ) ,

(4.6) 1 2 1 0 1 2 Δ ( ξ ) Δ ( 1 ) μ 1 Λ ( η ) Λ ( 1 ) λ 2 2 F ξ η ( ξ κ 2 + ( 1 ξ ) κ 1 , η κ 4 + ( 1 η ) κ 3 ) d ξ d η = Π 3 φ ( μ 1 ) 1 ψ ( λ 2 ) 2 F ξ η ( κ 2 , κ 4 ) + Π 3 φ ( μ 1 ) 2 ψ ( λ 2 ) 2 F ξ η ( κ 2 , κ 3 ) + Π 4 φ ( μ 1 ) 1 ψ ( λ 2 ) 2 F ξ η ( κ 1 , κ 4 ) + Π 4 φ ( μ 1 ) 2 ψ ( λ 2 ) 2 F ξ η ( κ 1 , κ 3 ) ,

(4.7) 1 2 1 1 2 1 Δ ( ξ ) Δ ( 1 ) μ 1 Λ ( η ) Λ ( 1 ) μ 2 2 F ξ η ( ξ κ 2 + ( 1 ξ ) κ 1 , η κ 4 + ( 1 η ) κ 3 ) d ξ d η = Π 3 φ ( μ 1 ) 3 ψ ( μ 2 ) 2 F ξ η ( κ 2 , κ 4 ) + Π 3 φ ( μ 1 ) 4 ψ ( μ 2 ) 2 F ξ η ( κ 2 , κ 3 ) + Π 4 φ ( μ 1 ) 3 ψ ( μ 2 ) 2 F ξ η ( κ 1 , κ 4 ) + Π 4 φ ( μ 1 ) 4 ψ ( μ 2 ) 2 F ξ η ( κ 1 , κ 3 ) .

By the inequalities (4.4)–(4.7), the proof is completed.□

Remark 2

In Theorem 2, if we take φ ( ξ ) = ξ and ψ ( η ) = η , we obtain the inequality

Φ ( κ 1 , κ 2 ; κ 3 , κ 4 ) ( κ 2 κ 1 ) ( κ 4 κ 3 ) × Ψ 1 2 F ξ η ( κ 2 , κ 4 ) + Ψ 2 2 F ξ η ( κ 2 , κ 3 ) + Ψ 3 2 F ξ η ( κ 1 , κ 4 ) + Ψ 3 2 F ξ η ( κ 1 , κ 3 ) ,

where Φ ( κ 1 , κ 2 ; κ 3 , κ 4 ) is defined as in Remark 1 and

Ψ 1 = λ 1 3 + μ 1 3 3 λ 1 8 5 μ 1 8 + 5 12 λ 2 3 + μ 2 3 3 λ 2 8 5 μ 2 8 + 5 12 , Ψ 2 = λ 1 3 + μ 1 3 3 λ 1 8 5 μ 1 8 + 5 12 λ 2 3 + μ 2 3 3 + λ 2 2 + μ 2 2 7 μ 2 + 3 λ 2 8 + 1 3 , Ψ 3 = λ 1 3 + μ 1 3 3 + λ 1 2 + μ 1 2 7 μ 1 + 3 λ 1 8 + 1 3 λ 2 3 + μ 2 3 3 λ 2 8 5 μ 2 8 + 5 12

and

Ψ 4 = λ 1 3 + μ 1 3 3 + λ 1 2 + μ 1 2 7 μ 1 + 3 λ 1 8 + 1 3 λ 2 3 + μ 2 3 3 + λ 2 2 + μ 2 2 7 μ 2 + 3 λ 2 8 + 1 3 ,

which is given by Budak and Ali in [49].

Corollary 3

In Theorem 2, if we use φ ( ξ ) = ξ α Γ ( κ 1 ) and ψ ( η ) = ξ β Γ ( β ) , then we obtain the following parameterized Simpson-type inequality for Riemann-Liouville fractional integrals:

Ω ( κ 1 , κ 2 ; κ 3 , κ 4 ) ( κ 2 κ 1 ) ( κ 4 κ 3 ) × 2 F ξ η ( κ 2 , κ 4 ) ( Π 1 α ( λ 1 ) 1 β ( λ 2 ) + Π 1 α ( λ 1 ) 3 β ( μ 2 ) + Π 3 α ( μ 1 ) 1 β ( λ 2 ) + Π 3 α ( μ 1 ) 3 β ( μ 2 ) ) + 2 F ξ η ( κ 2 , κ 3 ) ( Π 1 α ( λ 1 ) 2 β ( λ 2 ) + Π 1 α ( λ 1 ) 4 β ( μ 2 ) + Π 3 α ( μ 1 ) 2 β ( λ 2 ) + Π 3 α ( μ 1 ) 4 β ( μ 2 ) ) + 2 F ξ η ( κ 1 , κ 4 ) ( Π 2 α ( λ 1 ) 1 β ( λ 2 ) + Π 2 α ( λ 1 ) 3 β ( μ 2 ) + Π 4 α ( μ 1 ) 1 β ( λ 2 ) + Π 4 α ( μ 1 ) 3 β ( μ 2 ) ) + 2 F ξ η ( κ 1 , κ 3 ) ( Π 2 α ( λ 1 ) 2 β ( λ 2 ) + Π 2 α ( λ 1 ) 4 β ( μ 2 ) + Π 4 α ( μ 1 ) 2 β ( λ 2 ) + Π 4 α ( μ 1 ) 4 β ( μ 2 ) ) ,

where Ω ( κ 1 , κ 2 ; κ 3 , κ 4 ) is defined as in Corollary 1 and

Π 1 α ( λ 1 ) = α α + 2 λ 1 α + 2 α λ 1 8 + 1 2 α + 2 ( α + 2 ) , Π 2 α ( λ 1 ) = 2 α α + 1 λ 1 α + 1 α λ 1 2 + 1 2 α + 1 ( α + 1 ) Π 1 α ( λ 1 ) , Π 3 α ( μ 1 ) = α α + 2 μ 1 α + 2 α 5 8 μ 1 + 2 α + 2 + 1 2 α + 2 ( α + 2 ) , Π 4 α ( μ 1 ) = 2 α α + 1 μ 1 α + 1 α 3 2 μ 1 + 2 α + 1 + 1 2 α + 1 ( α + 1 ) Π 3 α ( μ 1 )

and

1 β ( λ 2 ) = β β + 2 λ 2 β + 2 β λ 2 8 + 1 2 β + 2 ( β + 2 ) , 2 β ( λ 2 ) = 2 β β + 1 λ 2 β + 1 β λ 2 2 + 1 2 β + 1 ( β + 1 ) 1 β ( λ 2 ) , 3 β ( μ 2 ) = β β + 2 μ 2 β + 2 β 5 8 μ 2 + 2 β + 2 + 1 2 β + 2 ( β + 2 ) , 4 β ( μ 2 ) = 2 β β + 1 μ 2 β + 1 β 3 2 μ 2 + 2 β + 1 + 1 2 β + 1 ( β + 1 ) 3 β ( μ 2 ) .

Corollary 4

In Theorem 2, if we use φ ( ξ ) = ξ α k k Γ k ( α ) and ψ ( η ) = η β k k Γ k ( β ) , then we obtain the following parameterized Simpson-type inequality for k -Riemann-Liouville fractional integrals:

( κ 1 , κ 2 ; κ 3 , κ 4 ) ( κ 2 κ 1 ) ( κ 4 κ 3 ) × 2 F ξ η ( κ 2 , κ 4 ) Π 1 α k ( λ 1 ) 1 β k ( λ 2 ) + Π 1 α k ( λ 1 ) 3 β k ( μ 2 ) + Π 3 α k ( μ 1 ) 1 β k ( λ 2 ) + Π 3 α k ( μ 1 ) 3 β k ( μ 2 ) + 2 F ξ η ( κ 2 , κ 3 ) Π 1 α k ( λ 1 ) 2 β k ( λ 2 ) + Π 1 α k ( λ 1 ) 4 β k ( μ 2 ) + Π 3 α k ( μ 1 ) 2 β k ( λ 2 ) + Π 3 α k ( μ 1 ) 4 β k ( μ 2 ) + 2 F ξ η ( κ 1 , κ 4 ) Π 2 α k ( λ 1 ) 1 β k ( λ 2 ) + Π 2 α k ( λ 1 ) 3 β k ( μ 2 ) + Π 4 α k ( μ 1 ) 1 β k ( λ 2 ) + Π 4 α k ( μ 1 ) 3 β k ( μ 2 ) + 2 F ξ η ( κ 1 , κ 3 ) Π 2 α k ( λ 1 ) 2 β k ( λ 2 ) + Π 2 α k ( λ 1 ) 4 β k ( μ 2 ) + Π 4 α k ( μ 1 ) 2 β k ( λ 2 ) + Π 4 α k ( μ 1 ) 4 β k ( μ 2 ) ,

where ( κ 1 , κ 2 ; κ 3 , κ 4 ) is defined as in Corollary 2 and

Π 1 α k ( λ 1 ) = α α + 2 k λ 1 α + 2 k α λ 1 8 + 1 2 α + 2 k k α + 2 k k , Π 2 α k ( λ 1 ) = 2 α α + k λ 1 α + k α λ 1 2 + k 2 α + k k ( α + k ) Π 1 α k , Π 3 α k ( μ 1 ) = α α + 2 k μ 1 α + 2 k α 5 8 μ 1 + 2 α + 2 k k + 1 2 α + 2 k k α + 2 k k , Π 4 α k ( μ 1 ) = 2 α α + k μ 1 α + k α 3 2 μ 1 + 2 α + k k k + k 2 α + k k ( α + k ) Π 3 α k

and

1 β k ( λ 2 ) = β β + 2 k λ 2 β + 2 k β λ 2 8 + 1 2 β + 2 k k β + 2 k k , 2 β k ( λ 2 ) = 2 β β + k λ 2 β + k β λ 2 2 + k 2 β + k k ( β + k ) 1 β k , 3 β k ( μ 2 ) = β β + 2 k μ 2 β + 2 k β 5 8 μ 2 + 2 β + 2 k k + 1 2 β + 2 k k β + 2 k k , 4 β k ( μ 2 ) = 2 β β + k μ 2 β + k β 3 2 μ 2 + 2 β + k k k + k 2 β + k k ( β + k ) 3 β k .

Theorem 3

We assume that the conditions of Lemma 1 hold. If the mapping 2 F ξ η q is co-ordinated convex on Δ , q 1 , then we have the following inequality:

(4.8) Θ ( κ 1 , κ 2 ; κ 3 , κ 4 ) ( κ 2 κ 1 ) ( κ 4 κ 3 ) 0 1 2 Δ ( ξ ) Δ ( 1 ) λ 1 d ξ 1 1 q 0 1 2 Λ ( η ) Λ ( 1 ) λ 2 d η 1 1 q × Π 1 φ ( λ 1 ) 1 ψ ( λ 2 ) 2 F ξ η ( κ 2 , κ 4 ) q + Π 1 φ ( λ 1 ) 2 ψ ( λ 2 ) 2 F ξ η ( κ 2 , κ 3 ) q

(4.8) + Π 2 φ ( λ 1 ) 1 ψ ( λ 2 ) 2 F ξ η ( κ 1 , κ 4 ) q + Π 2 φ ( λ 1 ) 2 ψ ( λ 2 ) 2 F ξ η ( κ 1 , κ 3 ) q 1 q + 0 1 2 Λ ( η ) Λ ( 1 ) μ 2 d η 1 1 q 1 2 1 Δ ( ξ ) Δ ( 1 ) λ 1 d ξ 1 1 q × Π 1 φ ( λ 1 ) 3 ψ ( μ 2 ) 2 F ξ η ( κ 2 , κ 4 ) q + Π 1 φ ( λ 1 ) 4 ψ ( μ 2 ) 2 F ξ η ( κ 2 , κ 3 ) q + Π 2 φ ( λ 1 ) 3 ψ ( μ 2 ) 2 F ξ η ( κ 1 , κ 4 ) q + Π 2 φ ( λ 1 ) 4 ψ ( μ 2 ) 2 F ξ η ( κ 1 , κ 3 ) q 1 q + 1 2 1 Λ ( η ) Λ ( 1 ) λ 2 d η 1 1 q 0 1 2 Δ ( ξ ) Δ ( 1 ) μ 1 d ξ 1 1 q × Π 3 φ ( μ 1 ) 1 ψ ( λ 2 ) 2 F ξ η ( κ 2 , κ 4 ) q + Π 3 φ ( μ 1 ) 2 ψ ( λ 2 ) 2 F ξ η ( κ 2 , κ 3 ) q + Π 4 φ ( μ 1 ) 1 ψ ( λ 2 ) 2 F ξ η ( κ 1 , κ 4 ) q + Π 4 φ ( μ 1 ) 2 ψ ( λ 2 ) 2 F ξ η ( κ 1 , κ 3 ) q 1 q + 1 2 1 Λ ( η ) Λ ( 1 ) μ 2 d η 1 1 q 1 2 1 Δ ( ξ ) Δ ( 1 ) μ 1 d ξ 1 1 q × Π 3 φ ( μ 1 ) 3 ψ ( μ 2 ) 2 F ξ η ( κ 2 , κ 4 ) q + Π 3 φ ( μ 1 ) 4 ψ ( μ 2 ) 2 F ξ η ( κ 2 , κ 3 ) q + Π 4 φ ( μ 1 ) 3 ψ ( μ 2 ) 2 F ξ η ( κ 1 , κ 4 ) q + Π 4 φ ( μ 1 ) 4 ψ ( μ 2 ) 2 F ξ η ( κ 1 , κ 3 ) q 1 q ,

where Π i φ and i ψ , i = 1 , 2 , 3 , 4 are defined as in Theorem 2.

Proof

By using power mean inequality in (4.3) and co-ordinated convexity of 2 F ξ η q , we have

(4.9) 0 1 2 0 1 2 Δ ( ξ ) Δ ( 1 ) λ 1 Λ ( η ) Λ ( 1 ) λ 2 2 F ξ η ( ξ κ 2 + ( 1 ξ ) κ 1 , η κ 4 + ( 1 η ) κ 3 ) d ξ d η 0 1 2 Δ ( ξ ) Δ ( 1 ) λ 1 d ξ 1 1 q 0 1 2 Λ ( η ) Λ ( 1 ) λ 2 d η 1 1 q × 0 1 2 0 1 2 ( Δ ( ξ ) Δ ( 1 ) λ 1 ) ( Λ ( η ) Λ ( 1 ) λ 2 ) 2 F ξ η ( ξ κ 2 + ( 1 ξ ) κ 1 , η κ 4 + ( 1 η ) κ 3 ) q d ξ d η 1 q 0 1 2 Δ ( ξ ) Δ ( 1 ) λ 1 d ξ 1 1 q 0 1 2 Λ ( η ) Λ ( 1 ) λ 2 d η 1 1 q

(4.9) 0 1 2 0 1 2 Δ ( ξ ) Δ ( 1 ) λ 1 Λ ( η ) Λ ( 1 ) λ 2 ξ η 2 F ξ η ( κ 2 , κ 4 ) q + ξ ( 1 η ) 2 F ξ η ( κ 2 , κ 3 ) q + ( 1 ξ ) η 2 F ξ η ( κ 1 , κ 4 ) q + ( 1 ξ ) ( 1 η ) 2 F ξ η ( κ 1 , κ 3 ) q 1 q d ξ d η = 0 1 2 Δ ( ξ ) Δ ( 1 ) λ 1 d ξ 1 1 q 0 1 2 Λ ( η ) Λ ( 1 ) λ 2 d η 1 1 q Π 1 φ ( λ 1 ) 1 ψ ( λ 2 ) 2 F ξ η ( κ 2 , κ 4 ) q + Π 1 φ ( λ 1 ) 2 ψ ( λ 2 ) 2 F ξ η ( κ 2 , κ 3 ) q + Π 2 φ ( λ 1 ) 1 ψ ( λ 2 ) 2 F ξ η ( κ 1 , κ 4 ) q + Π 2 φ ( λ 1 ) 2 ψ ( λ 2 ) 2 F ξ η ( κ 1 , κ 3 ) q 1 q .

Similarly, we obtain

(4.10) 0 1 2 1 2 1 ( Δ ( ξ ) Δ ( 1 ) λ 1 ) ( Λ ( η ) Λ ( 1 ) μ 2 ) 2 F ξ η ( ξ κ 2 + ( 1 ξ ) κ 1 , η κ 4 + ( 1 η ) κ 3 ) d ξ d η 0 1 2 Λ ( η ) Λ ( 1 ) μ 2 d η 1 1 q 1 2 1 Δ ( ξ ) Δ ( 1 ) λ 1 d ξ 1 1 q Π 1 φ ( λ 1 ) 3 ψ ( μ 2 ) 2 F ξ η ( κ 2 , κ 4 ) q + Π 1 φ ( λ 1 ) 4 ψ ( μ 2 ) 2 F ξ η ( κ 2 , κ 3 ) q + Π 2 φ ( λ 1 ) 3 ψ ( μ 2 ) 2 F ξ η ( κ 1 , κ 4 ) q + Π 2 φ ( λ 1 ) 4 ψ ( μ 2 ) 2 F ξ η ( κ 1 , κ 3 ) q 1 q ,

(4.11) 1 2 1 0 1 2 ( Δ ( ξ ) Δ ( 1 ) μ 1 ) ( Λ ( η ) Λ ( 1 ) λ 2 ) 2 F ξ η ( ξ κ 2 + ( 1 ξ ) κ 1 , η κ 4 + ( 1 η ) κ 3 ) d ξ d η 1 2 1 Λ ( η ) Λ ( 1 ) λ 2 d η 1 1 q 0 1 2 Δ ( ξ ) Δ ( 1 ) μ 1 d ξ 1 1 q Π 3 φ ( μ 1 ) 1 ψ ( λ 2 ) 2 F ξ η ( κ 2 , κ 4 ) q + Π 3 φ ( μ 1 ) 2 ψ ( λ 2 ) 2 F ξ η ( κ 2 , κ 3 ) q + Π 4 φ ( μ 1 ) 1 ψ ( λ 2 ) 2 F ξ η ( κ 1 , κ 4 ) q + Π 4 φ ( μ 1 ) 2 ψ ( λ 2 ) 2 F ξ η ( κ 1 , κ 3 ) q 1 q

and

(4.12) 1 2 1 1 2 1 ( Δ ( ξ ) Δ ( 1 ) μ 1 ) ( Λ ( η ) Λ ( 1 ) μ 2 ) 2 F ξ η ( ξ κ 2 + ( 1 ξ ) κ 1 , η κ 4 + ( 1 η ) κ 3 ) d ξ d η 1 2 1 Λ ( η ) Λ ( 1 ) μ 2 d η 1 1 q 1 2 1 Δ ( ξ ) Δ ( 1 ) μ 1 d ξ 1 1 q Π 3 φ ( μ 1 ) 3 ψ ( μ 2 ) 2 F ξ η ( κ 2 , κ 4 ) q + Π 3 φ ( μ 1 ) 4 ψ ( μ 2 ) 2 F ξ η ( κ 2 , κ 3 ) q + Π 4 φ ( μ 1 ) 3 ψ ( μ 2 ) 2 F ξ η ( κ 1 , κ 4 ) q + Π 4 φ ( μ 1 ) 4 ψ ( μ 2 ) 2 F ξ η ( κ 1 , κ 3 ) q 1 q .

By the inequalities (4.9)–(4.12), the proof is completed.□

Corollary 5

In Theorem 3, if we take φ ( ξ ) = ξ and ψ ( η ) = η , we have

Φ ( κ 1 , κ 2 ; κ 3 , κ 4 ) ( κ 2 κ 1 ) ( κ 4 κ 3 ) ( Π 1 ( λ 1 ) + Π 2 ( λ 1 ) ) 1 1 q ( 1 ( λ 2 ) + 2 ( λ 2 ) ) 1 1 q × Π 1 ( λ 1 ) 1 ( λ 2 ) 2 F ξ η ( κ 2 , κ 4 ) q + Π 1 ( λ 1 ) 2 ( λ 2 ) 2 F ξ η ( κ 2 , κ 3 ) q + Π 2 ( λ 1 ) 1 ( λ 2 ) 2 F ξ η ( κ 1 , κ 4 ) q + Π 2 ( λ 1 ) 2 ( λ 2 ) 2 F ξ η ( κ 1 , κ 3 ) q 1 q + ( 3 ( μ 2 ) + 4 ( μ 2 ) ) 1 1 q ( Π 1 ( λ 1 ) + Π 2 ( λ 1 ) ) 1 1 q × Π 1 ( λ 1 ) 3 ( μ 2 ) 2 F ξ η ( κ 2 , κ 4 ) q + Π 1 ( λ 1 ) 4 ( μ 2 ) 2 F ξ η ( κ 2 , κ 3 ) q + Π 2 ( λ 1 ) 3 ( μ 2 ) 2 F ξ η ( κ 1 , κ 4 ) q + Π 2 ( λ 1 ) 4 ( μ 2 ) 2 F ξ η ( κ 1 , κ 3 ) q 1 q + ( 1 ( λ 2 ) + 2 ( λ 2 ) ) 1 1 q ( Π 3 ( μ 1 ) + Π 4 ( μ 1 ) ) 1 1 q × Π 3 ( μ 1 ) 1 ( λ 2 ) 2 F ξ η ( κ 2 , κ 4 ) q + Π 3 ( μ 1 ) 2 ( λ 2 ) 2 F ξ η ( κ 2 , κ 3 ) q + Π 4 ( μ 1 ) 1 ( λ 2 ) 2 F ξ η ( κ 1 , κ 4 ) q + Π 4 ( μ 1 ) 2 ( λ 2 ) 2 F ξ η ( κ 1 , κ 3 ) q 1 q + ( 3 ( μ 2 ) + 4 ( μ 2 ) ) 1 1 q ( Π 3 ( μ 1 ) + Π 4 ( μ 1 ) ) 1 1 q × Π 3 ( μ 1 ) 3 ( μ 2 ) 2 F ξ η ( κ 2 , κ 4 ) q + Π 3 ( μ 1 ) 4 ( μ 2 ) 2 F ξ η ( κ 2 , κ 3 ) q + Π 4 ( μ 1 ) 3 ( μ 2 ) 2 F ξ η ( κ 1 , κ 4 ) q + Π 4 ( μ 1 ) 4 ( μ 2 ) 2 F ξ η ( κ 1 , κ 3 ) q 1 q ,

where Φ ( κ 1 , κ 2 ; κ 3 , κ 4 ) is defined as in Remark 1,

Π 1 ( λ 1 ) = 1 3 λ 1 3 λ 1 8 + 1 24 , Π 2 ( λ 1 ) = λ 1 3 3 + λ 1 2 3 λ 1 8 + 1 12 , Π 3 ( μ 1 ) = 1 3 μ 1 3 5 8 μ 1 + 9 24 , Π 4 ( μ 1 ) = 1 3 μ 1 3 + μ 1 2 7 8 μ 1 + 1 4

and

1 ( λ 2 ) = 1 3 λ 2 3 λ 2 8 + 1 24 , 2 ( λ 2 ) = λ 2 3 3 + λ 2 2 3 λ 1 8 + 1 12 , 3 ( μ 2 ) = 1 3 μ 2 3 5 8 μ 2 + 9 24 , 4 ( μ 2 ) = 1 3 μ 2 3 + μ 2 2 7 8 μ 2 + 1 4 .

Corollary 6

In Theorem 3, if we use φ ( ξ ) = ξ α Γ ( α ) and ψ ( η ) = ξ β Γ ( β ) , then we obtain the following parameterized Simpson-type inequality for Riemann-Liouville fractional integrals:

Ω ( κ 1 , κ 2 ; κ 3 , κ 4 ) ( κ 2 κ 1 ) ( κ 4 κ 3 ) ( Π 1 α ( λ 1 ) + Π 2 α ( λ 1 ) ) 1 1 q ( 1 β ( λ 2 ) + 2 β ( λ 2 ) ) 1 1 q × Π 1 α ( λ 1 ) 1 β ( λ 2 ) 2 F ξ η ( κ 2 , κ 4 ) q + Π 1 α ( λ 1 ) 2 β ( λ 2 ) 2 F ξ η ( κ 2 , κ 3 ) q + Π 2 α ( λ 1 ) 1 β ( λ 2 ) 2 F ξ η ( κ 1 , κ 4 ) q + Π 2 α ( λ 1 ) 2 β ( λ 2 ) 2 F ξ η ( κ 1 , κ 3 ) q 1 q + ( 3 β ( μ 2 ) + 4 β ( μ 2 ) ) 1 1 q ( Π 1 α ( λ 1 ) + Π 2 α ( λ 1 ) ) 1 1 q × Π 1 α ( λ 1 ) 3 β ( μ 2 ) 2 F ξ η ( κ 2 , κ 4 ) q + Π 1 α ( λ 1 ) 4 β ( μ 2 ) 2 F ξ η ( κ 2 , κ 3 ) q + Π 2 α ( λ 1 ) 3 β ( μ 2 ) 2 F ξ η ( κ 1 , κ 4 ) q + Π 2 α ( λ 1 ) 4 β ( μ 2 ) 2 F ξ η ( κ 1 , κ 3 ) q 1 q + ( 1 β ( λ 2 ) + 2 β ( λ 2 ) ) 1 1 q ( Π 3 α ( μ 1 ) + Π 4 α ( μ 1 ) ) 1 1 q × Π 3 α ( μ 1 ) 1 β ( λ 2 ) 2 F ξ η ( κ 2 , κ 4 ) q + Π 3 α ( μ 1 ) 2 β ( λ 2 ) 2 F ξ η ( κ 2 , κ 3 ) q + Π 4 α ( μ 1 ) 1 β ( λ 2 ) 2 F ξ η ( κ 1 , κ 4 ) q + Π 4 α ( μ 1 ) 2 β ( λ 2 ) 2 F ξ η ( κ 1 , κ 3 ) q 1 q + ( 3 β ( μ 2 ) + 4 β ( μ 2 ) ) 1 1 q ( Π 3 α ( μ 1 ) + Π 4 α ( μ 1 ) ) 1 1 q × Π 3 α ( μ 1 ) 3 β ( μ 2 ) 2 F ξ η ( κ 2 , κ 4 ) q + Π 3 α ( μ 1 ) 4 β ( μ 2 ) 2 F ξ η ( κ 2 , κ 3 ) q + Π 4 α ( μ 1 ) 3 β ( μ 2 ) 2 F ξ η ( κ 1 , κ 4 ) q + Π 4 α ( μ 1 ) 4 β ( μ 2 ) 2 F ξ η ( κ 1 , κ 3 ) q 1 q ,

where Ω ( κ 1 , κ 2 ; κ 3 , κ 4 ) is defined as in Corollary 1 and Π i α , i β , i = 1 , 2 , 3 , 4 are defined in Corollary 3.

Corollary 7

In Theorem 3, if we use φ ( ξ ) = ξ α k k Γ k ( α ) and ψ ( η ) = η β k k Γ k ( β ) , then we obtain the following parameterized Simpson-type inequality for k -Riemann-Liouville fractional integrals:

( κ 1 , κ 2 ; κ 3 , κ 4 ) ( κ 2 κ 1 ) ( κ 4 κ 3 ) Π 1 α k ( λ 1 ) + Π 2 α k ( λ 1 ) 1 1 q 1 β k ( λ 2 ) + 2 β k ( λ 2 ) 1 1 q × Π 1 α k ( λ 1 ) 1 β k ( λ 2 ) 2 F ξ η ( κ 2 , κ 4 ) q + Π 1 α k ( λ 1 ) 2 β k ( λ 2 ) 2 F ξ η ( κ 2 , κ 3 ) q + Π 2 α k ( λ 1 ) 1 β k ( λ 2 ) 2 F ξ η ( κ 1 , κ 4 ) q + Π 2 α k ( λ 1 ) 2 β k ( λ 2 ) 2 F ξ η ( κ 1 , κ 3 ) q 1 q + 3 β k ( μ 2 ) + 4 β k ( μ 2 ) 1 1 q Π 1 α k ( λ 1 ) + Π 2 α k ( λ 1 ) 1 1 q × Π 1 α k ( λ 1 ) 3 β k ( μ 2 ) 2 F ξ η ( κ 2 , κ 4 ) q + Π 1 α k ( λ 1 ) 4 β k ( μ 2 ) 2 F ξ η ( κ 2 , κ 3 ) q + Π 2 α k ( λ 1 ) 3 β k ( μ 2 ) 2 F ξ η ( κ 1 , κ 4 ) q + Π 2 α k ( λ 1 ) 4 β k ( μ 2 ) 2 F ξ η ( κ 1 , κ 3 ) q 1 q

+ 1 β k ( λ 2 ) + 2 β k ( λ 2 ) 1 1 q Π 3 α k ( μ 1 ) + Π 4 α k ( μ 1 ) 1 1 q × Π 3 α k ( μ 1 ) 1 β k ( λ 2 ) 2 F ξ η ( κ 2 , κ 4 ) q + Π 3 α k ( μ 1 ) 2 β k ( λ 2 ) 2 F ξ η ( κ 2 , κ 3 ) q + Π 4 α k ( μ 1 ) 1 β k ( λ 2 ) 2 F ξ η ( κ 1 , κ 4 ) q + Π 4 α k ( μ 1 ) 2 β k ( λ 2 ) 2 F ξ η ( κ 1 , κ 3 ) q 1 q + 3 β k ( μ 2 ) + 4 β k ( μ 2 ) 1 1 q Π 3 α k ( μ 1 ) + Π 4 α k ( μ 1 ) 1 1 q × Π 3 α k ( μ 1 ) 3 β k ( μ 2 ) 2 F ξ η ( κ 2 , κ 4 ) q + Π 3 α k ( μ 1 ) 4 β k ( μ 2 ) 2 F ξ η ( κ 2 , κ 3 ) q + Π 4 α k ( μ 1 ) 3 β k ( μ 2 ) 2 F ξ η ( κ 1 , κ 4 ) q + Π 4 α k ( μ 1 ) 4 β k ( μ 2 ) 2 F ξ η ( κ 1 , κ 3 ) q 1 q ,

where ( κ 1 , κ 2 ; κ 3 , κ 4 ) is defined as in Corollary 2 and Π i α k , i β k , i = 1 , 2 , 3 , 4 are defined in Corollary 4.

Theorem 4

We assume that the conditions of Lemma 1 hold. If the mapping 2 F ξ η q is co-ordinated convex on Δ , then we have the following inequality:

Θ ( κ 1 , κ 2 ; κ 3 , κ 4 ) ( κ 2 κ 1 ) ( κ 4 κ 3 ) 0 1 2 Δ ( ξ ) Δ ( 1 ) λ 1 d ξ 1 p 0 1 2 Λ ( η ) Λ ( 1 ) λ 2 d η 1 p × 2 F ξ η ( κ 2 , κ 4 ) q + 3 2 F ξ η ( κ 2 , κ 3 ) q + 3 2 F ξ η ( κ 1 , κ 4 ) q + 9 2 F ξ η ( κ 1 , κ 3 ) q 64 1 q + 0 1 2 Λ ( η ) Λ ( 1 ) μ 2 d η 1 p 1 2 1 Δ ( ξ ) Δ ( 1 ) λ 1 d ξ 1 p × 3 2 F ξ η ( κ 2 , κ 4 ) q + 3 2 F ξ η ( κ 1 , κ 3 ) q + 2 F ξ η ( κ 2 , κ 3 ) q + 9 2 F ξ η ( κ 1 , κ 4 ) q 64 1 q + 1 2 1 Λ ( η ) Λ ( 1 ) λ 2 d η 1 p 0 1 2 Δ ( ξ ) Δ ( 1 ) μ 1 d ξ 1 p × 3 2 F ξ η ( κ 2 , κ 4 ) q + 3 2 F ξ η ( κ 1 , κ 3 ) q + 9 2 F ξ η ( κ 2 , κ 3 ) q + 2 F ξ η ( κ 1 , κ 4 ) q 64 1 q + 1 2 1 Λ ( η ) Λ ( 1 ) μ 2 d η 1 p 1 2 1 Δ ( ξ ) Δ ( 1 ) μ 1 d ξ 1 p

× 9 2 F ξ η ( κ 2 , κ 4 ) q + 3 2 F ξ η ( κ 2 , κ 3 ) q + 3 2 F ξ η ( κ 1 , κ 4 ) q + 2 F ξ η ( κ 1 , κ 3 ) q 64 1 q ,

where 1 p + 1 q = 1 .

Proof

By using the Hölder inequality in (4.3) and co-ordinated convexity of 2 F ξ η q , we have

(4.13) 0 1 2 0 1 2 ( Δ ( ξ ) Δ ( 1 ) λ 1 ) ( Λ ( η ) Λ ( 1 ) λ 2 ) 2 F ξ η ( ξ κ 2 + ( 1 ξ ) κ 1 , η κ 4 + ( 1 η ) κ 3 ) d ξ d η 0 1 2 Δ ( ξ ) Δ ( 1 ) λ 1 p d ξ 1 p 0 1 2 Λ ( η ) Λ ( 1 ) λ 2 p d η 1 p × 0 1 2 0 1 2 2 F ξ η ( ξ κ 2 + ( 1 ξ ) κ 1 , η κ 4 + ( 1 η ) κ 3 ) q d ξ d η 1 q 0 1 2 Δ ( ξ ) Δ ( 1 ) λ 1 p d ξ 1 p 0 1 2 Λ ( η ) Λ ( 1 ) λ 2 p d η 1 p × 0 1 2 0 1 2 ξ η 2 F ξ η ( κ 2 , κ 4 ) q + ξ ( 1 η ) 2 F ξ η ( κ 2 , κ 3 ) q + ( 1 ξ ) η 2 F ξ η ( κ 1 , κ 4 ) q + ( 1 ξ ) ( 1 η ) 2 F ξ η ( κ 1 , κ 3 ) q 1 q d ξ d η = 0 1 2 Δ ( ξ ) Δ ( 1 ) λ 1 p d ξ 1 p 0 1 2 Λ ( η ) Λ ( 1 ) λ 2 p d η 1 p × 2 F ξ η ( κ 2 , κ 4 ) q + 3 2 F ξ η ( κ 2 , κ 3 ) q + 3 2 F ξ η ( κ 1 , κ 4 ) q + 9 2 F ξ η ( κ 1 , κ 3 ) q 64 1 q .

Similarly, we obtain

(4.14) 0 1 2 1 2 1 Δ ( ξ ) Δ ( 1 ) λ 1 Λ ( η ) Λ ( 1 ) μ 2 2 F ξ η ( ξ κ 2 + ( 1 ξ ) κ 1 , η κ 4 + ( 1 η ) κ 3 ) d ξ d η 0 1 2 Λ ( η ) Λ ( 1 ) μ 2 d η 1 p 1 2 1 Δ ( ξ ) Δ ( 1 ) λ 1 d ξ 1 p × 3 2 F ξ η ( κ 2 , κ 4 ) q + 3 2 F ξ η ( κ 1 , κ 3 ) q + 2 F ξ η ( κ 2 , κ 3 ) q + 9 2 F ξ η ( κ 1 , κ 4 ) q 64 1 q ,

(4.15) 1 2 1 0 1 2 Δ ( ξ ) Δ ( 1 ) μ 1 Λ ( η ) Λ ( 1 ) λ 2 2 F ξ η ( ξ κ 2 + ( 1 ξ ) κ 1 , η κ 4 + ( 1 η ) κ 3 ) d ξ d η 1 2 1 Λ ( η ) Λ ( 1 ) λ 2 d η 1 p 0 1 2 Δ ( ξ ) Δ ( 1 ) μ 1 d ξ 1 p × 3 2 F ξ η ( κ 2 , κ 4 ) q + 3 2 F ξ η ( κ 1 , κ 3 ) q + 9 2 F ξ η ( κ 2 , κ 3 ) q + 2 F ξ η ( κ 1 , κ 4 ) q 64 1 q

and

(4.16) 1 2 1 1 2 1 Δ ( ξ ) Δ ( 1 ) μ 1 Λ ( η ) Λ ( 1 ) μ 2 2 F ξ η ( ξ κ 2 + ( 1 ξ ) κ 1 , η κ 4 + ( 1 η ) κ 3 ) d ξ d η 1 2 1 Λ ( η ) Λ ( 1 ) μ 2 d η 1 p 1 2 1 Δ ( ξ ) Δ ( 1 ) μ 1 d ξ 1 p × 9 2 F ξ η ( κ 2 , κ 4 ) q + 3 2 F ξ η ( κ 2 , κ 3 ) q + 3 2 F ξ η ( κ 1 , κ 4 ) q + 2 F ξ η ( κ 1 , κ 3 ) q 64 1 q .

If we substitute the inequalities (4.13)–(4.16) in (4.3), then we obtain the required result.□

Remark 3

In Theorem 4, if we take φ ( ξ ) = ξ and ψ ( η ) = η , we obtain

Φ ( κ 1 , κ 2 ; κ 3 , κ 4 ) ( κ 2 κ 1 ) ( κ 4 κ 3 ) 0 1 2 ξ λ 1 p d ξ 1 p 0 1 2 η λ 2 p d η 1 p × 2 F ξ η ( κ 2 , κ 4 ) q + 3 2 F ξ η ( κ 2 , κ 3 ) q + 3 2 F ξ η ( κ 1 , κ 4 ) q + 9 2 F ξ η ( κ 1 , κ 3 ) q 64 1 q + 0 1 2 η μ 2 p d η 1 p 1 2 1 ξ λ 1 p d ξ 1 p × 3 2 F ξ η ( κ 2 , κ 4 ) q + 3 2 F ξ η ( κ 1 , κ 3 ) q + 2 F ξ η ( κ 2 , κ 3 ) q + 9 2 F ξ η ( κ 1 , κ 4 ) q 64 1 q + 1 2 1 η λ 2 p d η 1 p 0 1 2 ξ μ 1 P d ξ 1 p × 3 2 F ξ η ( κ 2 , κ 4 ) q + 3 2 F ξ η ( κ 1 , κ 3 ) q + 9 2 F ξ η ( κ 2 , κ 3 ) q + 2 F ξ η ( κ 1 , κ 4 ) q 64 1 q

+ 1 2 1 η μ 2 P d η 1 p 1 2 1 ξ μ 1 p d ξ 1 p × 9 2 F ξ η ( κ 2 , κ 4 ) q + 3 2 F ξ η ( κ 2 , κ 3 ) q + 3 2 F ξ η ( κ 1 , κ 4 ) q + 2 F ξ η ( κ 1 , κ 3 ) q 64 1 q ,

where Φ ( κ 1 , κ 2 ; κ 3 , κ 4 ) is defined as in Remark 1.

Corollary 8

In Theorem 4, if we use φ ( ξ ) = ξ α Γ ( κ 1 ) and ψ ( η ) = ξ β Γ ( β ) , then we obtain the following parameterized Simpson-type inequality for Riemann-Liouville fractional integrals:

Ω ( κ 1 , κ 2 ; κ 3 , κ 4 ) ( κ 2 κ 1 ) ( κ 4 κ 3 ) 0 1 2 ξ α λ 1 p d ξ 1 p 0 1 2 η β λ 2 p d η 1 p × 2 F ξ α η β ( κ 2 , κ 4 ) q + 3 2 F ξ α η β ( κ 2 , κ 3 ) q + 3 2 F ξ α η β ( κ 1 , κ 4 ) q + 9 and 2 F ξ α η β ( κ 1 , κ 3 ) q 64 1 q + 0 1 2 η β μ 2 p d η 1 p 1 2 1 ξ α λ 1 p d ξ 1 p × 3 2 F ξ α η β ( κ 2 , κ 4 ) q + 3 2 F ξ α η β ( κ 1 , κ 3 ) q + 2 F ξ α η β ( κ 2 , κ 3 ) q + 9 2 F ξ α η β ( κ 1 , κ 4 ) q 64 1 q + 1 2 1 η β λ 2 p d η 1 p 0 1 2 ξ α μ 1 P d ξ 1 p × 3 2 F ξ α η β ( κ 2 , κ 4 ) q + 3 2 F ξ α η β ( κ 1 , κ 3 ) q + 9 2 F ξ α η β ( κ 2 , κ 3 ) q + 2 F ξ α η β ( κ 1 , κ 4 ) q 64 1 q + 1 2 1 η β μ 2 P d η 1 p 1 2 1 ξ α μ 1 p d ξ 1 p × 9 2 F ξ α η β ( κ 2 , κ 4 ) q + 3 2 F ξ α η β ( κ 2 , κ 3 ) q + 3 2 F ξ α η β ( κ 1 , κ 4 ) q + 2 F ξ α η β ( κ 1 , κ 3 ) q 64 1 q ,

where Ω ( κ 1 , κ 2 ; κ 3 , κ 4 ) is defined as in Corollary 1.

Corollary 9

In Theorem 4, if we use φ ( ξ ) = ξ α k k Γ k ( α ) and ψ ( η ) = η β k k Γ k ( β ) , then we obtain the following parameterized Simpson-type inequality for k -Riemann-Liouville fractional integrals:

( κ 1 , κ 2 ; κ 3 , κ 4 ) ( κ 2 κ 1 ) ( κ 4 κ 3 ) 0 1 2 ξ α k λ 1 p d ξ 1 p 0 1 2 η β k λ 2 p d η 1 p × 2 F ξ η ( κ 2 , κ 4 ) q + 3 2 F ξ η ( κ 2 , κ 3 ) q + 3 2 F ξ η ( κ 1 , κ 4 ) q + 9 2 F ξ η ( κ 1 , κ 3 ) q 64 1 q + 0 1 2 η β k μ 2 p d η 1 p 1 2 1 ξ α k λ 1 p d ξ 1 p × 3 2 F ξ η ( κ 2 , κ 4 ) q + 3 2 F ξ η ( κ 1 , κ 3 ) q + 2 F ξ η ( κ 2 , κ 3 ) q + 9 2 F ξ η ( κ 1 , κ 4 ) q 64 1 q + 1 2 1 η β k λ 2 p d η 1 p 0 1 2 ξ α k μ 1 P d ξ 1 p × 3 2 F ξ η ( κ 2 , κ 4 ) q + 3 2 F ξ η ( κ 1 , κ 3 ) q + 9 2 F ξ η ( κ 2 , κ 3 ) q + 2 F ξ η ( κ 1 , κ 4 ) q 64 1 q + 1 2 1 η β k μ 2 P d η 1 p 1 2 1 ξ α k μ 1 p d ξ 1 p × 9 2 F ξ η ( κ 2 , κ 4 ) q + 3 2 F ξ η ( κ 2 , κ 3 ) q + 3 2 F ξ η ( κ 1 , κ 4 ) q + 2 F ξ η ( κ 1 , κ 3 ) q 64 1 q ,

where ( κ 1 , κ 2 ; κ 3 , κ 4 ) is defined as in Corollary 2.

Theorem 5

We assume that the conditions of Lemma 1 hold. If the mapping 2 F ξ η q is co-ordinated convex on Δ , then we have the following inequality:

Θ ( κ 1 , κ 2 ; κ 3 , κ 4 ) ( κ 2 κ 1 ) ( κ 4 κ 3 ) 0 1 0 1 w ( ξ , η ) p d η d ξ 1 p × 2 F ξ η ( κ 1 , κ 3 ) q + 2 F ξ η ( κ 1 , κ 4 ) q + 2 F ξ η ( κ 2 , κ 3 ) q + 2 F ξ η ( κ 2 , κ 4 ) q 4 ,

where 1 p + 1 q = 1 .

Proof

Taking the modulus in Lemma 1 and using the Hölder inequality,

Θ ( κ 1 , κ 2 ; κ 3 , κ 4 ) = ( κ 2 κ 1 ) ( κ 4 κ 3 ) 0 1 0 1 w ( ξ , η ) 2 F ξ η ( ξ κ 2 + ( 1 ξ ) κ 1 , η κ 4 + ( 1 η ) κ 3 ) d η d ξ ( κ 2 κ 1 ) ( κ 4 κ 3 ) 0 1 0 1 w ( ξ , η ) 2 F ξ η ( ξ κ 2 + ( 1 ξ ) κ 1 , η κ 4 + ( 1 η ) κ 3 ) d η d ξ ( κ 2 κ 1 ) ( κ 4 κ 3 ) 0 1 0 1 w ( ξ , η ) p d η d ξ 1 p × 0 1 0 1 2 F ξ η ( ξ κ 2 + ( 1 ξ ) κ 1 , η κ 4 + ( 1 η ) κ 3 ) q 1 q ( κ 2 κ 1 ) ( κ 4 κ 3 ) 0 1 0 1 w ( ξ , η ) p d η d ξ 1 p × 0 1 0 1 ξ η 2 F ξ η ( κ 2 , κ 4 ) q + ξ ( 1 η ) 2 F ξ η ( κ 2 , κ 3 ) q + ( 1 ξ ) η 2 F ξ η ( κ 1 , κ 4 ) q + ( 1 ξ ) ( 1 η ) 2 F ξ η ( κ 1 , κ 3 ) q d η d ξ 1 q .

Since 2 F ξ η q , q > 1 , is a co-ordinated convex function on Δ , we obtain

(4.17) 0 1 0 1 2 F ξ η ( ξ κ 2 + ( 1 ξ ) κ 1 , η κ 4 + ( 1 η ) κ 3 ) q d η d ξ 2 F ξ η ( κ 1 , κ 3 ) q + 2 F ξ η ( κ 1 , κ 4 ) q + 2 F ξ η ( κ 2 , κ 3 ) q + 2 F ξ η ( κ 2 , κ 4 ) q 4 .

Remark 4

In Theorem 5, if we take φ ( ξ ) = ξ and ψ ( η ) = η , we have

Θ ( κ 1 , κ 2 ; κ 3 , κ 4 ) ( κ 2 κ 1 ) ( κ 4 κ 3 ) ( A p ( λ , μ ) ) 1 p × 2 F ξ η ( κ 1 , κ 3 ) q + 2 F ξ η ( κ 1 , κ 4 ) q + 2 F ξ η ( κ 2 , κ 3 ) q + 2 F ξ η ( κ 2 , κ 4 ) q 4 1 q ,

where

A p ( λ , μ ) = 1 ( p + 1 ) 2 λ 1 p + 1 + 1 2 λ 1 p + 1 + μ 1 1 2 p + 1 + ( 1 μ 1 ) p + 1 × λ 2 p + 1 + 1 2 λ 2 p + 1 + μ 2 1 2 p + 1 + ( 1 μ 2 ) p + 1 ,

given by Budak and Ali in [49].

Corollary 10

In Theorem 5, if we use φ ( ξ ) = ξ α Γ ( α ) and ψ ( η ) = ξ β Γ ( β ) , then we obtain

Θ ( κ 1 , κ 2 ; κ 3 , κ 4 ) ( κ 2 κ 1 ) ( κ 4 κ 3 ) 0 1 0 1 w 1 ( ξ , η ) p d η d ξ 1 p × 2 F ξ η ( κ 1 , κ 3 ) q + 2 F ξ η ( κ 1 , κ 4 ) q + 2 F ξ η ( κ 2 , κ 3 ) q + 2 F ξ η ( κ 2 , κ 4 ) q 4 1 q ,

where the mapping w 1 : [ 0 , 1 ] × [ 0 , 1 ] R is defined by

w 1 ( ξ α , η β ) = ( ξ α λ 1 ) ( η β λ 2 ) , 0 ξ 1 2 , 0 η 1 2 , ( ξ α λ 1 ) ( η β μ 2 ) , 0 ξ 1 2 , 1 2 η 1 , ( ξ α μ 1 ) ( η β λ 2 ) , 1 2 ξ 1 , 0 η 1 2 , ( ξ α μ 1 ) ( η β μ 2 ) , 1 2 ξ 1 , 1 2 η 1 .

Corollary 11

In Theorem 5, if we use φ ( ξ ) = ξ α k k Γ k ( α ) and ψ ( η ) = η β k k Γ k ( β ) , then we obtain

Θ ( κ 1 , κ 2 ; κ 3 , κ 4 ) ( κ 2 κ 1 ) ( κ 4 κ 3 ) 0 1 0 1 w 2 ( ξ , η ) p d η d ξ 1 p × 2 F ξ η ( κ 1 , κ 3 ) q + 2 F ξ η ( κ 1 , κ 4 ) q + 2 F ξ η ( κ 2 , κ 3 ) q + 2 F ξ η ( κ 2 , κ 4 ) q 4 1 q ,

where the mapping w 2 : [ 0 , 1 ] × [ 0 , 1 ] R is defined by

w 2 ( ξ , η ) = ξ α k λ 1 η β k λ 2 , 0 ξ 1 2 , 0 η 1 2 , ξ α k λ 1 η β k μ 2 , 0 ξ 1 2 , 1 2 η 1 , ξ α k μ 1 η β k λ 2 , 1 2 ξ 1 , 0 η 1 2 , ξ α k μ 1 η β k μ 2 , 1 2 ξ 1 , 1 2 η 1 .

5 Special cases of main results

In this section, we present some special cases of the results proved in the previous section.

Corollary 12

Under assumptions of Theorem 2 with λ 1 = λ 2 = 1 6 and μ 1 = μ 2 = 5 6 , we have the following inequality:

Δ ( 1 ) Λ ( 1 ) F κ 1 , κ 3 + κ 4 2 + F κ 2 , κ 3 + κ 4 2 + 4 F κ 1 + κ 2 2 , κ 3 + κ 4 2 + F κ 1 + κ 2 2 , κ 3 + F κ 1 + κ 2 2 , κ 4 9

+ F ( κ 1 , κ 3 ) + F ( κ 2 , κ 3 ) + F ( κ 1 , κ 4 ) + F ( κ 2 , κ 4 ) 36 2 3 Λ ( 1 ) I φ κ 1 + κ 2 2 F κ 1 , κ 3 + κ 4 2 + I φ κ 1 + κ 2 2 + F κ 2 , κ 3 + κ 4 2 + Δ ( 1 ) I ψ κ 3 + κ 4 2 F κ 1 + κ 2 2 , κ 3 + I ψ κ 3 + κ 4 2 + F κ 1 + κ 2 2 , κ 4 1 6 Δ ( 1 ) I ψ κ 3 + κ 4 2 F ( κ 1 , κ 3 ) + I ψ κ 3 + κ 4 2 + F ( κ 1 , κ 4 ) + I ψ κ 3 + κ 4 2 + F ( κ 2 , κ 3 ) + I ψ κ 3 + κ 4 2 F ( κ 2 , κ 4 ) 1 6 Λ ( 1 ) I φ κ 1 + κ 2 2 F ( κ 1 , κ 3 ) + I φ κ 1 + κ 2 2 + F ( κ 2 , κ 3 ) + I φ κ 1 + κ 2 2 F ( κ 1 , κ 4 ) + I φ κ 1 + κ 2 2 + F ( κ 2 , κ 4 ) + I φ , ψ κ 1 + κ 2 2 κ 3 + κ 4 2 F ( κ 1 , κ 3 ) + I φ , ψ κ 1 + κ 2 2 κ 3 + κ 4 2 + F ( κ 1 , κ 4 ) + I φ , ψ κ 1 + κ 2 2 + κ 3 + κ 4 2 F ( κ 2 , κ 3 ) + I φ , ψ κ 1 + κ 2 2 + κ 3 + κ 4 2 + F ( κ 2 , κ 4 ) ( κ 2 κ 1 ) ( κ 4 κ 3 ) 2 F ξ η ( κ 2 , κ 4 ) Π 1 φ 1 6 + Π 3 φ 5 6 1 ψ 1 6 + 3 ψ 5 6 + 2 F ξ η ( κ 2 , κ 3 ) Π 1 φ 1 6 + Π 3 φ 5 6 2 ψ 1 6 + 4 ψ 5 6 + 2 F ξ η ( κ 1 , κ 4 ) Π 2 φ 1 6 + Π 4 φ 5 6 1 ψ 1 6 + 3 ψ 5 6 + 2 F ξ η ( κ 1 , κ 3 ) Π 2 φ 1 6 + Π 4 φ 5 6 2 ψ 1 6 + 4 ψ 5 6 ,

where Π i φ and i ψ , i = 1 , 2 , 3 , 4 are defined as in (4.2).

Remark 5

In Corollary 12, if we take φ ( ξ ) = ξ and ψ ( η ) = η , then Corollary 12 reduces to [24, Theorem 3].

Remark 6

In Corollary 12, if we take φ ( ξ ) = ξ α Γ ( α ) and ψ ( η ) = η β Γ ( β ) , then we obtain

( κ 2 κ 1 ) α Γ ( α + 1 ) ( κ 4 κ 3 ) β Γ ( β + 1 ) F κ 1 , κ 3 + κ 4 2 + F κ 2 , κ 3 + κ 4 2 + 4 F κ 1 + κ 2 2 , κ 3 + κ 4 2 + F κ 1 + κ 2 2 , κ 3 + F κ 1 + κ 2 2 , κ 4 9 + F ( κ 1 , κ 3 ) + F ( κ 2 , κ 3 ) + F ( κ 1 , κ 4 ) + F ( κ 2 , κ 4 ) 36 2 3 Γ ( α + 1 ) ( κ 2 κ 1 ) α J κ 1 + κ 2 2 α F κ 1 , κ 3 + κ 4 2 + J κ 1 + κ 2 2 + α F κ 2 , κ 3 + κ 4 2 + Γ ( α + 1 ) ( κ 4 κ 3 ) β J κ 3 + κ 4 2 ψ F κ 1 + κ 2 2 , κ 3 + J κ 3 + κ 4 2 + ψ F κ 1 + κ 2 2 , κ 4 1 6 Γ ( α + 1 ) ( κ 4 κ 3 ) β J κ 3 + κ 4 2 β F ( κ 1 , κ 3 ) + J κ 3 + κ 4 2 + β F ( κ 1 , κ 4 ) + J κ 3 + κ 4 2 + β F ( κ 2 , κ 3 ) + J κ 3 + κ 4 2 β F ( κ 2 , κ 4 ) 1 6 Γ ( α + 1 ) ( κ 2 κ 1 ) α J κ 1 + κ 2 2 α F ( κ 1 , κ 3 ) + J κ 1 + κ 2 2 + α F ( κ 2 , κ 3 ) + J κ 1 + κ 2 2 α F ( κ 1 , κ 4 ) + J κ 1 + κ 2 2 + α F ( κ 2 , κ 4 )

+ Γ ( α + 1 ) ( κ 2 κ 1 ) α Γ ( β + 1 ) ( κ 4 κ 3 ) β J κ 1 + κ 2 2 , κ 3 + κ 4 2 α , β F ( κ 1 , κ 3 ) + J κ 1 + κ 2 2 , κ 3 + κ 4 2 + α , β F ( κ 1 , κ 4 ) + J κ 1 + κ 2 2 + , κ 3 + κ 4 2 α , β F ( κ 2 , κ 3 ) + J κ 1 + κ 2 2 + , κ 3 + κ 4 2 + α , β F ( κ 2 , κ 4 ) ( κ 2 κ 1 ) ( κ 4 κ 3 ) 2 F ξ η ( κ 2 , κ 4 ) Π 1 α 1 6 + Π 3 α 5 6 1 β 1 6 + 3 β 5 6 + 2 F ξ η ( κ 2 , κ 3 ) Π 1 α 1 6 + Π 3 α 5 6 2 β 1 6 + 4 β 5 6 + 2 F ξ η ( κ 1 , κ 4 ) Π 2 α 1 6 + Π 4 α 5 6 1 β 1 6 + 3 β 5 6 + 2 F ξ η ( κ 1 , κ 3 ) Π 2 α 1 6 + Π 4 α 5 6 2 β 1 6 + 4 β 5 6 .

Remark 7

In Corollary 12, if we take φ ( ξ ) = ξ α k k Γ k ( α ) and ψ ( η ) = η β k k Γ k ( β ) , then we obtain

( κ 2 κ 1 ) α k Γ ( α + k ) ( κ 4 κ 3 ) β k Γ ( β + k ) F κ 1 , κ 3 + κ 4 2 + F κ 2 , κ 3 + κ 4 2 + 4 F κ 1 + κ 2 2 , κ 3 + κ 4 2 + F κ 1 + κ 2 2 , κ 3 + F κ 1 + κ 2 2 , κ 4 9 + F ( κ 1 , κ 3 ) + F ( κ 2 , κ 3 ) + F ( κ 1 , κ 4 ) + F ( κ 2 , κ 4 ) 36 2 3 Γ ( α + k ) ( κ 2 κ 1 ) α k J κ 1 + κ 2 2 , k α F κ 1 , κ 3 + κ 4 2 + J κ 1 + κ 2 2 + , k α F κ 2 , κ 3 + κ 4 2 + Γ ( α + k ) ( κ 4 κ 3 ) β k J κ 3 + κ 4 2 , k ψ F κ 1 + κ 2 2 , κ 3 + J κ 3 + κ 4 2 + , k ψ F κ 1 + κ 2 2 , κ 4 1 6 Γ ( α + k ) ( κ 4 κ 3 ) β k J κ 3 + κ 4 2 , k β F ( κ 1 , κ 3 ) + J κ 3 + κ 4 2 + , k β F ( κ 1 , κ 4 ) + J κ 3 + κ 4 2 + , k β F ( κ 2 , κ 3 ) + J κ 3 + κ 4 2 , k β F ( κ 2 , κ 4 ) 1 6 Γ ( α + 1 ) ( κ 2 κ 1 ) α k J κ 1 + κ 2 2 , k α F ( κ 1 , κ 3 ) + J κ 1 + κ 2 2 + , k α F ( κ 2 , κ 3 ) + J κ 1 + κ 2 2 , k α F ( κ 1 , κ 4 ) + J κ 1 + κ 2 2 + , k α F ( κ 2 , κ 4 ) + Γ ( α + k ) ( κ 2 κ 1 ) α Γ ( β + k ) ( κ 4 κ 3 ) β J κ 1 + κ 2 2 , κ 3 + κ 4 2 α , β , k F ( κ 1 , κ 3 ) + J κ 1 + κ 2 2 , κ 3 + κ 4 2 + α , β , k F ( κ 1 , κ 4 ) + J κ 1 + κ 2 2 + , κ 3 + κ 4 2 α , β , k F ( κ 2 , κ 3 ) + J κ 1 + κ 2 2 + , κ 3 + κ 4 2 + α , β , k F ( κ 2 , κ 4 ) ( κ 2 κ 1 ) ( κ 4 κ 3 ) 2 F ξ η ( κ 2 , κ 4 ) Π 1 α k 1 6 + Π 3 α k 5 6 1 β k 1 6 + 3 β k 5 6 + 2 F ξ η ( κ 2 , κ 3 ) Π 1 α k 1 6 + Π 3 α k 5 6 2 β k 1 6 + 4 β k 5 6 + 2 F ξ η ( κ 1 , κ 4 ) Π 2 α k 1 6 + Π 4 α k 5 6 1 β k 1 6 + 3 β k 5 6 + 2 F ξ η ( κ 1 , κ 3 ) Π 2 α k 1 6 + Π 4 α k 5 6 2 β k 1 6 + 4 β k 5 6 .

Corollary 13

Under assumptions of Theorem 2 with λ 1 = λ 2 = μ 1 = μ 2 = 1 2 , we have the following inequality:

( κ 2 κ 1 ) α Γ ( α + 1 ) ( κ 4 κ 3 ) β Γ ( β + 1 ) F ( κ 1 , κ 3 ) + F ( κ 2 , κ 3 ) + F ( κ 1 , κ 4 ) + F ( κ 2 , κ 4 ) 4 Δ ( 1 ) 2 I ψ κ 3 + κ 4 2 F ( κ 1 , κ 3 ) + I ψ κ 3 + κ 4 2 + F ( κ 1 , κ 4 ) + I ψ κ 3 + κ 4 2 + F ( κ 2 , κ 3 ) + I ψ κ 3 + κ 4 2 F ( κ 2 , κ 4 ) Λ ( 1 ) 2 I φ κ 1 + κ 2 2 F ( κ 1 , κ 3 ) + I φ κ 1 + κ 2 2 + F ( κ 2 , κ 3 ) + κ 1 + κ 2 2 I φ F ( κ 1 , κ 4 ) + I φ κ 1 + κ 2 2 + F ( κ 2 , κ 4 ) + I φ , ψ κ 1 + κ 2 2 κ 3 + κ 4 2 F ( κ 1 , κ 3 ) + I φ , ψ κ 1 + κ 2 2 κ 3 + κ 4 2 + F ( κ 1 , κ 4 ) + I φ , ψ κ 1 + κ 2 2 + κ 3 + κ 4 2 F ( κ 2 , κ 3 ) + I φ , ψ κ 1 + κ 2 2 + κ 3 + κ 4 2 + F ( κ 2 , κ 4 ) ( κ 2 κ 1 ) ( κ 4 κ 3 ) 2 F ξ η ( κ 2 , κ 4 ) Π 1 φ 1 2 + Π 3 φ 1 2 1 ψ 1 2 + 3 ψ 1 2 + 2 F ξ η ( κ 2 , κ 3 ) Π 1 φ 1 2 + Π 3 φ 1 2 2 ψ 1 2 + 4 ψ 1 2 + 2 F ξ η ( κ 1 , κ 4 ) Π 2 φ 1 2 + Π 4 φ 1 2 1 ψ 1 2 + 3 ψ 1 2 + 2 F ξ η ( κ 1 , κ 3 ) Π 2 φ 1 2 + Π 4 φ 1 2 2 ψ 1 2 + 4 ψ 1 2 ,

where Π i φ and i ψ , i = 1 , 2 , 3 , 4 are defined as in (4.2).

Remark 8

In Corollary 13, if we take φ ( ξ ) = ξ and ψ ( η ) = η , then Corollary 13 reduces to [7, Theorem 2].

Remark 9

In Corollary 13, if we take φ ( ξ ) = ξ α Γ ( α ) and ψ ( η ) = η β Γ ( β ) , then we obtain

F ( κ 1 , κ 3 ) + F ( κ 2 , κ 3 ) + F ( κ 1 , κ 4 ) + F ( κ 2 , κ 4 ) 4 Γ ( α + 1 ) 2 ( κ 4 κ 3 ) β J κ 3 + κ 4 2 β F ( κ 1 , κ 3 ) + J κ 3 + κ 4 2 + β F ( κ 1 , κ 4 ) + J κ 3 + κ 4 2 + β F ( κ 2 , κ 3 ) + J κ 3 + κ 4 2 β F ( κ 2 , κ 4 ) Γ ( α + 1 ) 2 ( κ 2 κ 1 ) α J κ 1 + κ 2 2 α F ( κ 1 , κ 3 ) + J κ 1 + κ 2 2 + α F ( κ 2 , κ 3 ) + J κ 1 + κ 2 2 α F ( κ 1 , κ 4 ) + J κ 1 + κ 2 2 + α F ( κ 2 , κ 4 ) + Γ ( α + 1 ) ( κ 2 κ 1 ) α Γ ( β + 1 ) ( κ 4 κ 3 ) β J κ 1 + κ 2 2 , κ 3 + κ 4 2 α , β F ( κ 1 , κ 3 ) + J κ 1 + κ 2 2 , κ 3 + κ 4 2 + α , β F ( κ 1 , κ 4 ) + J κ 1 + κ 2 2 + , κ 3 + κ 4 2 α , β F ( κ 2 , κ 3 ) + J κ 1 + κ 2 2 + , κ 3 + κ 4 2 + α , β F ( κ 2 , κ 4 ) ( κ 2 κ 1 ) ( κ 4 κ 3 ) 2 F ξ η ( κ 2 , κ 4 ) Π 1 α 1 2 + Π 3 α 1 2 1 β 1 2 + 3 β 1 2 + 2 F ξ η ( κ 2 , κ 3 ) Π 1 α 1 2 + Π 3 α 1 2 2 β 1 2 + 4 β 1 2 + 2 F ξ η ( κ 1 , κ 4 ) Π 2 α 1 2 + Π 4 α 1 2 1 β 1 2 + 3 β 1 2 + 2 F ξ η ( κ 1 , κ 3 ) Π 2 α 1 2 + Π 4 α 1 2 2 β 1 2 + 4 β 1 2 .

Remark 10

In Corollary 13, if we take φ ( ξ ) = ξ α k k Γ k ( α ) and ψ ( η ) = η β k k Γ k ( β ) , then we obtain

F ( κ 1 , κ 3 ) + F ( κ 2 , κ 3 ) + F ( κ 1 , κ 4 ) + F ( κ 2 , κ 4 ) 4 Γ ( α + k ) 2 ( κ 4 κ 3 ) β k J κ 3 + κ 4 2 β , k F ( κ 1 , κ 3 ) + J κ 3 + κ 4 2 + β , k F ( κ 1 , κ 4 ) + J κ 3 + κ 4 2 + β , k F ( κ 2 , κ 3 ) + J κ 3 + κ 4 2 β , k F ( κ 2 , κ 4 ) Γ ( α + k ) 2 ( κ 2 κ 1 ) α k J κ 1 + κ 2 2 α , k F ( κ 1 , κ 3 ) + J κ 1 + κ 2 2 + α , k F ( κ 2 , κ 3 ) + J κ 1 + κ 2 2 α , k F ( κ 1 , κ 4 ) + J κ 1 + κ 2 2 + α , k F ( κ 2 , κ 4 ) + Γ ( α + k ) ( κ 2 κ 1 ) α k Γ ( β + k ) ( κ 4 κ 3 ) β k J κ 1 + κ 2 2 , κ 3 + κ 4 2 α , β , k F ( κ 1 , κ 3 ) + J κ 1 + κ 2 2 , κ 3 + κ 4 2 + α , β , k F ( κ 1 , κ 4 ) + J κ 1 + κ 2 2 + , κ 3 + κ 4 2 α , β , k F ( κ 2 , κ 3 ) + J κ 1 + κ 2 2 + , κ 3 + κ 4 2 + α , β , k F ( κ 2 , κ 4 ) ( κ 2 κ 1 ) ( κ 4 κ 3 ) 2 F ξ η ( κ 2 , κ 4 ) Π 1 α k 1 2 + Π 3 α k 1 2 1 β k 1 2 + 3 β k 1 2 + 2 F ξ η ( κ 2 , κ 3 ) Π 1 α k 1 2 + Π 3 α k 1 2 2 β k 1 2 + 4 β k 1 2 + 2 F ξ η ( κ 1 , κ 4 ) Π 2 α k 1 2 + Π 4 α k 1 2 1 β k 1 2 + 3 β k 1 2 + 2 F ξ η ( κ 1 , κ 3 ) Π 2 α k 1 2 + Π 4 α k 1 2 2 β k 1 2 + 4 β k 1 2 .

Corollary 14

Under assumptions of Theorem 2 with λ 1 = λ 2 = 0 and μ 1 = μ 2 = 1 , we have the following inequality:

Δ ( 1 ) Λ ( 1 ) F κ 1 + κ 2 2 , κ 3 + κ 4 2 Λ ( 1 ) I φ κ 1 + κ 2 2 F κ 1 , κ 3 + κ 4 2 + I φ κ 1 + κ 2 2 + F κ 2 , κ 3 + κ 4 2 Δ ( 1 ) I ψ κ 3 + κ 4 2 F κ 1 + κ 2 2 , κ 3 + I ψ κ 3 + κ 4 2 + F κ 1 + κ 2 2 , κ 4 + I φ , ψ κ 1 + κ 2 2 κ 3 + κ 4 2 F ( κ 1 , κ 3 ) + I φ , ψ κ 1 + κ 2 2 κ 3 + κ 4 2 + F ( κ 1 , κ 4 ) + I φ , ψ κ 1 + κ 2 2 + κ 3 + κ 4 2 F ( κ 2 , κ 3 ) + I φ , ψ κ 1 + κ 2 2 + κ 3 + κ 4 2 + F ( κ 2 , κ 4 ) ( κ 2 κ 1 ) ( κ 4 κ 3 ) 2 F ξ η ( κ 2 , κ 4 ) ( Π 1 φ ( 0 ) + Π 3 φ ( 1 ) ) ( 1 ψ ( 0 ) + 3 ψ ( 1 ) ) + 2 F ξ η ( κ 2 , κ 3 ) ( Π 1 φ ( 0 ) + Π 3 φ ( 1 ) ) ( 2 ψ ( 0 ) + 4 ψ ( 1 ) ) + 2 F ξ η ( κ 1 , κ 4 ) ( Π 2 φ ( 0 ) + Π 4 φ ( 1 ) ) ( 1 ψ ( 0 ) + 3 ψ ( 1 ) ) + 2 F ξ η ( κ 1 , κ 3 ) ( Π 2 φ ( 0 ) + Π 4 φ ( 1 ) ) ( 2 ψ ( 0 ) + 4 ψ ( 1 ) ) ,

where Π i φ and i ψ , i = 1 , 2 , 3 , 4 are defined as in (4.2).

Remark 11

In Corollary 14, if we take φ ( ξ ) = ξ and ψ ( η ) = η , then Corollary 13 reduces to [6, Theorem 2].

Remark 12

In Corollary 14, if we take φ ( ξ ) = ξ α Γ ( α ) and ψ ( η ) = η β Γ ( β ) , then we obtain

F κ 1 + κ 2 2 , κ 3 + κ 4 2 Γ ( α + 1 ) ( κ 2 κ 1 ) α J κ 1 + κ 2 2 α F κ 1 , κ 3 + κ 4 2 + J κ 1 + κ 2 2 + α F κ 2 , κ 3 + κ 4 2 Γ ( α + 1 ) ( κ 4 κ 3 ) β J κ 3 + κ 4 2 ψ F κ 1 + κ 2 2 , κ 3 + J κ 3 + κ 4 2 + ψ F κ 1 + κ 2 2 , κ 4 + Γ ( α + 1 ) ( κ 2 κ 1 ) α Γ ( β + 1 ) ( κ 4 κ 3 ) β J κ 1 + κ 2 2 , κ 3 + κ 4 2 α , β F ( κ 1 , κ 3 ) + J κ 1 + κ 2 2 , κ 3 + κ 4 2 + α , β F ( κ 1 , κ 4 ) + J κ 1 + κ 2 2 + , κ 3 + κ 4 2 α , β F ( κ 2 , κ 3 ) + J κ 1 + κ 2 2 + , κ 3 + κ 4 2 + α , β F ( κ 2 , κ 4 ) ( κ 2 κ 1 ) ( κ 4 κ 3 ) 2 F ξ η ( κ 2 , κ 4 ) ( Π 1 α ( 0 ) + Π 3 α ( 1 ) ) ( 1 β ( 0 ) + 3 β ( 1 ) ) + 2 F ξ η ( κ 2 , κ 3 ) ( Π 1 α ( 0 ) + Π 3 α ( 1 ) ) ( 2 β ( 0 ) + 4 β ( 1 ) ) + 2 F ξ η ( κ 1 , κ 4 ) ( Π 2 α ( 0 ) + Π 4 α ( 1 ) ) ( 1 β ( 0 ) + 3 β ( 1 ) ) + 2 F ξ η ( κ 1 , κ 3 ) ( Π 2 α ( 0 ) + Π 4 α ( 1 ) ) ( 2 β ( 0 ) + 4 β ( 1 ) ) .

Remark 13

In Corollary 13, if we take φ ( ξ ) = ξ α k k Γ k ( α ) and ψ ( η ) = η β k k Γ k ( β ) , then we obtain

F κ 1 + κ 2 2 , κ 3 + κ 4 2 Γ ( α + k ) ( κ 2 κ 1 ) α k J κ 1 + κ 2 2 , k α F κ 1 , κ 3 + κ 4 2 + J κ 1 + κ 2 2 + , k α F κ 2 , κ 3 + κ 4 2 Γ ( α + k ) ( κ 4 κ 3 ) β J κ 3 + κ 4 2 , k ψ F κ 1 + κ 2 2 , κ 3 + J κ 3 + κ 4 2 + , k ψ F κ 1 + κ 2 2 , κ 4 + Γ ( α + k ) ( κ 2 κ 1 ) α Γ ( β + 1 ) ( κ 4 κ 3 ) β J κ 1 + κ 2 2 , κ 3 + κ 4 2 α , β , k F ( κ 1 , κ 3 ) + J κ 1 + κ 2 2 , κ 3 + κ 4 2 + α , β , k F ( κ 1 , κ 4 ) + J κ 1 + κ 2 2 + , κ 3 + κ 4 2 α , β , k F ( κ 2 , κ 3 ) + J κ 1 + κ 2 2 + , κ 3 + κ 4 2 + α , β , k F ( κ 2 , κ 4 ) ( κ 2 κ 1 ) ( κ 4 κ 3 ) 2 F ξ η ( κ 2 , κ 4 ) Π 1 α k ( 0 ) + Π 3 α k ( 1 ) 1 β k ( 0 ) + 3 β k ( 1 ) + 2 F ξ η ( κ 2 , κ 3 ) Π 1 α k ( 0 ) + Π 3 α k ( 1 ) 2 β k ( 0 ) + 4 β k ( 1 ) + 2 F ξ η ( κ 1 , κ 4 ) Π 2 α k ( 0 ) + Π 4 α k ( 1 ) 1 β k ( 0 ) + 3 β k ( 1 ) + 2 F ξ η ( κ 1 , κ 3 ) Π 2 α k ( 0 ) + Π 4 α k ( 1 ) 2 β k ( 0 ) + 4 β k ( 1 ) .

Remark 14

By special choices of λ 1 , λ 2 , μ 1 and μ 2 in Theorems 3, 4 and 5, one can obtain several new Simpson-, trapezoid- and midpoint-type inequalities. Writing these situations is left to the reader as it will make the article too long.

6 Conclusion

In this paper, we present several generalized inequalities for co-ordinated convex functions via generalized fractional integrals. It is also shown that the results given here are the strong generalization of some already published ones. It is an interesting and new problem that the forthcoming researchers can use the techniques of this study and obtain similar inequalities for different kinds of co-ordinated convexity in their next works.

Acknowledgements

The authors would like to express their sincere thanks to the editor and the anonymous reviewers for their helpful comments and suggestions.

  1. Funding information: The funding of this work was supported by Zhejiang Normal University, Jinhua, China.

  2. Author contributions: All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

  3. Conflict of interest: Authors declare that they have no competing interests.

  4. Data availability statement: Data sharing is not applicable to this paper as no data sets were generated or analyzed during the current study.

References

[1] S. S. Dragomir and R. P. Agarwal , Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula, Appl. Math. Lett. 11 (1998), no. 5, 91–95. 10.1016/S0893-9659(98)00086-XSearch in Google Scholar

[2] U. S. Kirmaci , Inequalities for differentiable mappings and applications to special means of real numbers to midpoint formula, Appl. Math. Comput. 147 (2004), no. 1, 137–146. 10.1016/S0096-3003(02)00657-4Search in Google Scholar

[3] M. Z. Sarikaya , E. Set , H. Yaldiz , and N. Basak , Hermite-Hadamard’s inequalities for fractional integrals and related fractional inequalities, Math. Comput. Model. 57 (2013), no. 9–10, 2403–2407. 10.1016/j.mcm.2011.12.048Search in Google Scholar

[4] M. Iqbal , S. Qaisar , and M. Muddassar , A short note on integral inequality of type Hermite-Hadamard through convexity, J. Comput. Anal. Appl. 21 (2016), no. 5, 946–953. Search in Google Scholar

[5] S. S. Dragomir , On Hadamard’s inequality for convex functions on the co-ordinates in a rectangle from the plane, Taiwanese J. Math. 4 (2001), 775–788. 10.11650/twjm/1500574995Search in Google Scholar

[6] M. A. Latif and S. S. Dragomir , On some new inequalities for differentiable co-ordinated convex functions, J. Inequal. Appl. 1 (2012), 1–13. 10.1186/1029-242X-2012-28Search in Google Scholar

[7] M. Z. Sarikaya , E. Set , M. E. Özdemir , and S. S. Dragomir , New some Hadamard’s type inequalities for co-ordinated convex functions, Tamsui Oxf. J. Inf. Math. Sci. 28 (2012), no. 2, 137–152. 10.1186/1029-242X-2012-28Search in Google Scholar

[8] M. Z. Sarıkaya , On the Hermite-Hadamard-type inequalities for co-ordinated convex function via fractional integrals, Integral Transforms Spec. Funct. 25 (2014), no. 2, 134–147. 10.1080/10652469.2013.824436Search in Google Scholar

[9] T. Tunç , M. Z. Sarikaya , and H. Yaldiz , Fractional Hermite Hadamard’s type inequality for the co-ordinated convex functions, TWMS J. Pure Appl. Math. 11 (2020), 3–29. Search in Google Scholar

[10] M. Z. Sarikaya and F. Ertuğral , On the generalized Hermite-Hadamard inequalities, An. Univ. Craiova Ser. Mat. Inform. 47 (2020), no. 1, 193–213. Search in Google Scholar

[11] M. E. Turkay , M. Z. Sarikaya , H. Budak , and H. Yildirim , Some Hermite-Hadamard type inequalities for co-ordinated convex functions via generalized fractional integrals, available at:https://www.researchgate.net/publication/321803898. Search in Google Scholar

[12] H. Budak , H. Kara , and M. E. Kiriş , On Hermite-Hadamard type inequalities for co-ordinated trigonometrically ρ -convex functions, Tbilisi Math. J. 13 (2020), no. 2, 1–26, https://doi.org/10.32513/tbilisi/1593223217. Search in Google Scholar

[13] F. Chen , A note on the Hermite-Hadamard inequality for convex functions on the co-ordinates, J. Math. Inequal. 8 (2014), no. 4, 915–923. 10.7153/jmi-08-69Search in Google Scholar

[14] H. Kara , M. A. Ali , and H. Budak , Hermite-Hadamard-type inequalities for interval-valued coordinated convex functions involving generalized fractional integrals, Math. Methods Appl. Sci. 44 (2021), 104–123. 10.1002/mma.6712Search in Google Scholar

[15] S. Kermausuor , Generalized Ostrowski-type inequalities for s -convex functions on the coordinates via fractional integrals, Fract. Differ. Calc. 10 (2020), no. 2, 169–187. 10.7153/fdc-2020-10-11Search in Google Scholar

[16] M. V. Marcela , New inequalities for co-ordinated convex functions via Riemann-Liouville fractional calculus, Tamkang J. Math. 45 (2014), no. 3, 285–296. 10.5556/j.tkjm.45.2014.1365Search in Google Scholar

[17] M. E. Ozdemir , C. Yildiz , and A. O. Akdemir , On some new Hadamard-type inequalities for co-ordinated quasi-convex functions, Hacet. J. Math. Stat. 41 (2012), no. 5, 697–707. Search in Google Scholar

[18] M. Z. Sarikaya , A. Akkurt , H. Budak , M. E. Yildirim , and H. Yildirim , Hermite-Hadamard’s inequalities for conformable fractional integrals, Konuralp J. Math. 8 (2020), no. 2, 376–383. 10.11121/ijocta.01.2019.00559Search in Google Scholar

[19] T. Tunç and M. Z. Sarıkaya , On Hermite-Hadamard type inequalities via fractional integral operators, Filomat 33 (2019), no. 3, 837–854. 10.2298/FIL1903837TSearch in Google Scholar

[20] S. S. Dragomir , R. P. Agarwal , and P. Cerone , On Simpson’s inequality and applications, J. Inequal. Appl. 5 (2000), 533–579. 10.1155/S102558340000031XSearch in Google Scholar

[21] M. Alomari , M. Darus , and S. S. Dragomir , New inequalities of Simpson’s type for η -convex functions with applications, RGMIA Res. Rep. Coll. 12 (2009), no. 4, 9. Search in Google Scholar

[22] M. Z. Sarikaya , E. Set , and M. E. Özdemir , On new inequalities of Simpson-type for convex functions, RGMIA Res. Rep. Coll. 13 (2010), no. 2, 2. Search in Google Scholar

[23] H. Kalsoom , J. D. Wu , S. Hussain , and M. A. Latif , Simpson-type inequalities for co-ordinated convex functions on quantum calculus, Symmetry 11 (2019), no. 6, 768. 10.3390/sym11060768Search in Google Scholar

[24] M. E. Ozdemir , A. O. Akdemir , and H. Kavurmacı , On the Simpson’s inequality for convex functions on the coordinates, Turkish J. Anal. Number Theory 2 (2014), no. 5, 165–169. 10.12691/tjant-2-5-2Search in Google Scholar

[25] J. Park , Generalizations of the Simpson-like type inequalities for co-ordinated η -convex mappings in the second sense, Int. J. Math. Math. Sci. 2012 (2012), 715751. 10.1155/2012/715751Search in Google Scholar

[26] J. Park , Generalizations of the Simpson-like type inequalities for coordinated η -convex mappings, Far East J. Math. Sci. 54 (2011), no. 2, 225–236. Search in Google Scholar

[27] J. Chen and X. Huang , Some new inequalities of Simpson-type for η -convex functions via fractional integrals, Filomat 31 (2017), no. 15, 4989–4997. 10.2298/FIL1715989CSearch in Google Scholar

[28] S. Hussain , J. Khalid , and Y. M. Chu , Some generalized fractional integral Simpson-type inequalities with applications, AIMS Math. 5 (2020), no. 6, 5859–5883. 10.3934/math.2020375Search in Google Scholar

[29] M. Iqbal , S. Qaisar , and S. Hussain , On Simpson-type inequalities utilizing fractional integrals, J. Comput. Anal. Appl. 23 (2017), no. 6, 1137–1145. Search in Google Scholar

[30] S. Rashid , A. O. Akdemir , F. Jarad , M. A. Noor , and K. I. Noor , Simpson-type integral inequalities for κ -fractional integrals and their applications, AIMS Math. 4 (2019), no. 4, 1087–1100. 10.3934/math.2019.4.1087Search in Google Scholar

[31] F. Ertuğral and M. Z. Sarikaya , Simpson-type integral inequalities for generalized fractional integral, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 113 (2019), no. 4, 3115–3124. 10.1007/s13398-019-00680-xSearch in Google Scholar

[32] M. A. Ali , H. Budak , Z. Zhang , and H. Yildrim , Some new Simpson-type inequalities for co-ordinated convex functions in quantum calculus, Math. Methods Appl. Sci. 44 (2020), no. 6, 4515–4540, https://doi.org/10.1002/mma.7048. Search in Google Scholar

[33] H. Budak , S. Erden , and M. A. Ali , Simpson and Newton type inequalities for convex functions via newly defined quantum integrals, Math. Methods Appl. Sci. 44 (2021), no. 1, 378–390. 10.1002/mma.6742Search in Google Scholar

[34] S. Erden , S. Iftikhar , R. M. Delavar , P. Kumam , P. Thounthong , and W. Kumam , On generalizations of some inequalities for convex functions via quantum integral. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 114 (2020), no. 3, 1–15, https://doi.org/10.1007/s13398-020-00841-3. Search in Google Scholar

[35] S. Erden and M. Z. Sarikaya , On the Hermite-Hadamard-type and Ostrowski type inequalities for the co-ordinated convex functions, Palest. J. Math. 6 (2017), no. 1, 257–270. Search in Google Scholar

[36] S. Iftikhar , P. Kumam , and S. Erden , Newton’s type integral inequalities via local fractional integrals, Fractals 28 (2020), no. 3, 2050037, https://doi.org/10.1142/S0218348X20500371. Search in Google Scholar

[37] J. Park , On Simpson-like type integral inequalities for differentiable preinvex functions, Appl. Math. Sci. 7 (2013), no. 121, 6009–6021. 10.12988/ams.2013.39498Search in Google Scholar

[38] M. Vivas-Cortez , M. A. Ali , A. Kashuri , I. B. Sial , and Z. Zhang , Some new Newton’s type integral inequalities for co-ordinated convex functions in quantum calculus, Symmetry 12 (2020), no. 9, 1476, https://doi.org/10.3390/sym12091476 . 10.3390/sym12091476Search in Google Scholar

[39] S. Mubeen and G. M Habibullah , k-fractional integrals and application, Int. J. Contemp. Math. Sci. 7 (2012), no. 2, 89–94. Search in Google Scholar

[40] H. Budak , H. Kara , and R. Kapucu , New midpoint-type inequalities for generalized fractional integral, Comput. Methods Differ. Equ. (2021), https://doi.org/10.22034/cmde.2020.40684.1772 . 10.18514/MMN.2019.2525Search in Google Scholar

[41] H. Budak , E. Pehlivan , and P. Kösem , On new extensions of Hermite-Hadamard inequalities for generalized fractional integrals, Sahand Commun. Math. Anal. 18 (2021), no. 1, 73–88. Search in Google Scholar

[42] J. Han , P. O. Mohammed , and H. Zeng , Generalized fractional integral inequalities of Hermite-Hadamard-type for a convex function, Open Math. 18 (2020), 794–806, https://doi.org/10.1515/math-2020-0038. Search in Google Scholar

[43] A. Kashuri , M. A. Ali , M. Abbas , and H. Budak , New inequalities for generalized m-convex functions via generalized fractional integral operators and their applications, Int. J. Nonlinear Anal. Appl. 10 (2019), no. 2, 275–299. Search in Google Scholar

[44] A. Kashuri and R. Liko , On Fejér type inequalities for convex mappings utilizing generalized fractional integrals, Appl. Appl. Math. 15 (2020), no. 1, 135–150. Search in Google Scholar

[45] P. O. Mohammed , and M. Z. Sarikaya , On generalized fractional integral inequalities for twice differentiable convex functions, J. Comput. Appl. Math. 372 (2020), 112740. 10.1016/j.cam.2020.112740Search in Google Scholar

[46] F. Qi , P. O. Mohammed , J.-C Yao , and Y.-H. Yao , Generalized fractional integral inequalities of Hermite-Hadamard type for ( α,m )-convex functions, J. Inequal. Appl. 2019 (2019), 135, https://doi.org/10.1186/s13660-019-2079-6. Search in Google Scholar

[47] D. Zhao , M. A. Ali , A. Kashuri , H. Budak , and M. Z. Sarikaya , Hermite-Hadamard-type inequalities for the interval-valued approximately h-convex functions via generalized fractional integrals, J. Inequal. Appl. 2020 (2020), 222, https://doi.org/10.1186/s13660-020-02488-5 . 10.1186/s13660-020-02488-5Search in Google Scholar

[48] G. Farid , A. Rehman , and M. Zahra , On Hadamard inequalities for k-fractional integrals, Nonlinear Funct. Anal. Appl. 21 (2016), no. 3, 463–478. Search in Google Scholar

[49] H. Budak and M. A. Ali , Some parametrized Hermite-Hadamard and Simpson-type inequalities for co-ordinated convex functions, Authorea (2021), https://doi.org/10.22541/au.161380579.94697093/v1. Search in Google Scholar

Received: 2021-04-08
Revised: 2021-06-28
Accepted: 2021-07-05
Published Online: 2021-11-18

© 2021 Humaira Kalsoom et al., published by De Gruyter

This work is licensed under the Creative Commons Attribution 4.0 International License.

Articles in the same Issue

  1. Regular Articles
  2. Sharp conditions for the convergence of greedy expansions with prescribed coefficients
  3. Range-kernel weak orthogonality of some elementary operators
  4. Stability analysis for Selkov-Schnakenberg reaction-diffusion system
  5. On non-normal cyclic subgroups of prime order or order 4 of finite groups
  6. Some results on semigroups of transformations with restricted range
  7. Quasi-ideal Ehresmann transversals: The spined product structure
  8. On the regulator problem for linear systems over rings and algebras
  9. Solvability of the abstract evolution equations in Ls-spaces with critical temporal weights
  10. Resolving resolution dimensions in triangulated categories
  11. Entire functions that share two pairs of small functions
  12. On stochastic inverse problem of construction of stable program motion
  13. Pentagonal quasigroups, their translatability and parastrophes
  14. Counting certain quadratic partitions of zero modulo a prime number
  15. Global attractors for a class of semilinear degenerate parabolic equations
  16. A new implicit symmetric method of sixth algebraic order with vanished phase-lag and its first derivative for solving Schrödinger's equation
  17. On sub-class sizes of mutually permutable products
  18. Asymptotic solution of the Cauchy problem for the singularly perturbed partial integro-differential equation with rapidly oscillating coefficients and with rapidly oscillating heterogeneity
  19. Existence and asymptotical behavior of solutions for a quasilinear Choquard equation with singularity
  20. On kernels by rainbow paths in arc-coloured digraphs
  21. Fully degenerate Bell polynomials associated with degenerate Poisson random variables
  22. Multiple solutions and ground state solutions for a class of generalized Kadomtsev-Petviashvili equation
  23. A note on maximal operators related to Laplace-Bessel differential operators on variable exponent Lebesgue spaces
  24. Weak and strong estimates for linear and multilinear fractional Hausdorff operators on the Heisenberg group
  25. Partial sums and inclusion relations for analytic functions involving (p, q)-differential operator
  26. Hodge-Deligne polynomials of character varieties of free abelian groups
  27. Diophantine approximation with one prime, two squares of primes and one kth power of a prime
  28. The equivalent parameter conditions for constructing multiple integral half-discrete Hilbert-type inequalities with a class of nonhomogeneous kernels and their applications
  29. Boundedness of vector-valued sublinear operators on weighted Herz-Morrey spaces with variable exponents
  30. On some new quantum midpoint-type inequalities for twice quantum differentiable convex functions
  31. Quantum Ostrowski-type inequalities for twice quantum differentiable functions in quantum calculus
  32. Asymptotic measure-expansiveness for generic diffeomorphisms
  33. Infinitesimals via Cauchy sequences: Refining the classical equivalence
  34. The (1, 2)-step competition graph of a hypertournament
  35. Properties of multiplication operators on the space of functions of bounded φ-variation
  36. Disproving a conjecture of Thornton on Bohemian matrices
  37. Some estimates for the commutators of multilinear maximal function on Morrey-type space
  38. Inviscid, zero Froude number limit of the viscous shallow water system
  39. Inequalities between height and deviation of polynomials
  40. New criteria-based ℋ-tensors for identifying the positive definiteness of multivariate homogeneous forms
  41. Determinantal inequalities of Hua-Marcus-Zhang type for quaternion matrices
  42. On a new generalization of some Hilbert-type inequalities
  43. On split quaternion equivalents for Quaternaccis, shortly Split Quaternaccis
  44. On split regular BiHom-Poisson color algebras
  45. Asymptotic stability of the time-changed stochastic delay differential equations with Markovian switching
  46. The mixed metric dimension of flower snarks and wheels
  47. Oscillatory bifurcation problems for ODEs with logarithmic nonlinearity
  48. The B-topology on S-doubly quasicontinuous posets
  49. Hyers-Ulam stability of isometries on bounded domains
  50. Inhomogeneous conformable abstract Cauchy problem
  51. Path homology theory of edge-colored graphs
  52. Refinements of quantum Hermite-Hadamard-type inequalities
  53. Symmetric graphs of valency seven and their basic normal quotient graphs
  54. Mean oscillation and boundedness of multilinear operator related to multiplier operator
  55. Numerical methods for time-fractional convection-diffusion problems with high-order accuracy
  56. Several explicit formulas for (degenerate) Narumi and Cauchy polynomials and numbers
  57. Finite groups whose intersection power graphs are toroidal and projective-planar
  58. On primitive solutions of the Diophantine equation x2 + y2 = M
  59. A note on polyexponential and unipoly Bernoulli polynomials of the second kind
  60. On the type 2 poly-Bernoulli polynomials associated with umbral calculus
  61. Some estimates for commutators of Littlewood-Paley g-functions
  62. Construction of a family of non-stationary combined ternary subdivision schemes reproducing exponential polynomials
  63. On the evolutionary bifurcation curves for the one-dimensional prescribed mean curvature equation with logistic type
  64. On intersections of two non-incident subgroups of finite p-groups
  65. Global existence and boundedness in a two-species chemotaxis system with nonlinear diffusion
  66. Finite groups with 4p2q elements of maximal order
  67. Positive solutions of a discrete nonlinear third-order three-point eigenvalue problem with sign-changing Green's function
  68. Power moments of automorphic L-functions related to Maass forms for SL3(ℤ)
  69. Entire solutions for several general quadratic trinomial differential difference equations
  70. Strong consistency of regression function estimator with martingale difference errors
  71. Fractional Hermite-Hadamard-type inequalities for interval-valued co-ordinated convex functions
  72. Montgomery identity and Ostrowski-type inequalities via quantum calculus
  73. Universal inequalities of the poly-drifting Laplacian on smooth metric measure spaces
  74. On reducible non-Weierstrass semigroups
  75. so-metrizable spaces and images of metric spaces
  76. Some new parameterized inequalities for co-ordinated convex functions involving generalized fractional integrals
  77. The concept of cone b-Banach space and fixed point theorems
  78. Complete consistency for the estimator of nonparametric regression model based on m-END errors
  79. A posteriori error estimates based on superconvergence of FEM for fractional evolution equations
  80. Solution of integral equations via coupled fixed point theorems in 𝔉-complete metric spaces
  81. Symmetric pairs and pseudosymmetry of Θ-Yetter-Drinfeld categories for Hom-Hopf algebras
  82. A new characterization of the automorphism groups of Mathieu groups
  83. The role of w-tilting modules in relative Gorenstein (co)homology
  84. Primitive and decomposable elements in homology of ΩΣℂP
  85. The G-sequence shadowing property and G-equicontinuity of the inverse limit spaces under group action
  86. Classification of f-biharmonic submanifolds in Lorentz space forms
  87. Some new results on the weaving of K-g-frames in Hilbert spaces
  88. Matrix representation of a cross product and related curl-based differential operators in all space dimensions
  89. Global optimization and applications to a variational inequality problem
  90. Functional equations related to higher derivations in semiprime rings
  91. A partial order on transformation semigroups with restricted range that preserve double direction equivalence
  92. On multi-step methods for singular fractional q-integro-differential equations
  93. Compact perturbations of operators with property (t)
  94. Entire solutions for several complex partial differential-difference equations of Fermat type in ℂ2
  95. Random attractors for stochastic plate equations with memory in unbounded domains
  96. On the convergence of two-step modulus-based matrix splitting iteration method
  97. On the separation method in stochastic reconstruction problem
  98. Robust estimation for partial functional linear regression models based on FPCA and weighted composite quantile regression
  99. Structure of coincidence isometry groups
  100. Sharp function estimates and boundedness for Toeplitz-type operators associated with general fractional integral operators
  101. Oscillatory hyper-Hilbert transform on Wiener amalgam spaces
  102. Euler-type sums involving multiple harmonic sums and binomial coefficients
  103. Poly-falling factorial sequences and poly-rising factorial sequences
  104. Geometric approximations to transition densities of Jump-type Markov processes
  105. Multiple solutions for a quasilinear Choquard equation with critical nonlinearity
  106. Bifurcations and exact traveling wave solutions for the regularized Schamel equation
  107. Almost factorizable weakly type B semigroups
  108. The finite spectrum of Sturm-Liouville problems with n transmission conditions and quadratic eigenparameter-dependent boundary conditions
  109. Ground state sign-changing solutions for a class of quasilinear Schrödinger equations
  110. Epi-quasi normality
  111. Derivative and higher-order Cauchy integral formula of matrix functions
  112. Commutators of multilinear strongly singular integrals on nonhomogeneous metric measure spaces
  113. Solutions to a multi-phase model of sea ice growth
  114. Existence and simulation of positive solutions for m-point fractional differential equations with derivative terms
  115. Bernstein-Walsh type inequalities for derivatives of algebraic polynomials in quasidisks
  116. Review Article
  117. Semiprimeness of semigroup algebras
  118. Special Issue on Problems, Methods and Applications of Nonlinear Analysis (Part II)
  119. Third-order differential equations with three-point boundary conditions
  120. Fractional calculus, zeta functions and Shannon entropy
  121. Uniqueness of positive solutions for boundary value problems associated with indefinite ϕ-Laplacian-type equations
  122. Synchronization of Caputo fractional neural networks with bounded time variable delays
  123. On quasilinear elliptic problems with finite or infinite potential wells
  124. Deterministic and random approximation by the combination of algebraic polynomials and trigonometric polynomials
  125. On a fractional Schrödinger-Poisson system with strong singularity
  126. Parabolic inequalities in Orlicz spaces with data in L1
  127. Special Issue on Evolution Equations, Theory and Applications (Part II)
  128. Impulsive Caputo-Fabrizio fractional differential equations in b-metric spaces
  129. Existence of a solution of Hilfer fractional hybrid problems via new Krasnoselskii-type fixed point theorems
  130. On a nonlinear system of Riemann-Liouville fractional differential equations with semi-coupled integro-multipoint boundary conditions
  131. Blow-up results of the positive solution for a class of degenerate parabolic equations
  132. Long time decay for 3D Navier-Stokes equations in Fourier-Lei-Lin spaces
  133. On the extinction problem for a p-Laplacian equation with a nonlinear gradient source
  134. General decay rate for a viscoelastic wave equation with distributed delay and Balakrishnan-Taylor damping
  135. On hyponormality on a weighted annulus
  136. Exponential stability of Timoshenko system in thermoelasticity of second sound with a memory and distributed delay term
  137. Convergence results on Picard-Krasnoselskii hybrid iterative process in CAT(0) spaces
  138. Special Issue on Boundary Value Problems and their Applications on Biosciences and Engineering (Part I)
  139. Marangoni convection in layers of water-based nanofluids under the effect of rotation
  140. A transient analysis to the M(τ)/M(τ)/k queue with time-dependent parameters
  141. Existence of random attractors and the upper semicontinuity for small random perturbations of 2D Navier-Stokes equations with linear damping
  142. Degenerate binomial and Poisson random variables associated with degenerate Lah-Bell polynomials
  143. Special Issue on Fractional Problems with Variable-Order or Variable Exponents (Part I)
  144. On the mixed fractional quantum and Hadamard derivatives for impulsive boundary value problems
  145. The Lp dual Minkowski problem about 0 < p < 1 and q > 0
Downloaded on 12.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/math-2021-0072/html?lang=en
Scroll to top button