Startseite On the concept of general solution for impulsive differential equations of fractional-order q ∈ (2,3)
Artikel Open Access

On the concept of general solution for impulsive differential equations of fractional-order q ∈ (2,3)

  • Xianmin Zhang EMAIL logo , Tong Shu , Zuohua Liu , Wenbin Ding , Hui Peng und Jun He
Veröffentlicht/Copyright: 8. Juli 2016

Abstract

In this paper, we find the formula of general solution for a generalized impulsive differential equations of fractional-order q ∈ (2, 3).

MSC 2010: 34A08; 34A37

1 Introduction

Fractional differential equations play an important part in modeling of many phenomena in various fields of science and engineering, and the subject of fractional differential equations is extensively researched (see [119] and the references therein).

On the other hand, impulsive differential equation is a key tool to describe some systems and processes with impulsive effects. There have appeared many papers focused on the subject of impulsive differential equations with Caputo fractional derivative [2031].

Recently, we have found that there exist general solutions for several kinds of impulsive fractional differential equations in [3238]. Based on these works, we will further study the general solution of the generalized impulsive differential equations of fractional-order q ∈ (2,3).

aDtqx(t)=f(t,x(t)),q(2,3),tJ=[a,T],tti(i=1,2,,L)andtt¯j(j=1,2,,M)andtt^l(l=1,2,,N),Δxt=ti=x(ti+)x(ti)=Iix(ti),i=1,2,,L,Δxt=t¯j=x(t¯j+)x(t¯j)=I¯jx(t¯j),j=1,2,,M,Δxt=t^l=x(t^l+)x(t^l)=I^lx(t^l),l=1,2,,N,x(a)=xa,x(a)=x¯a,x(a)=x^a.(1)

where aDtq denote Caputo fractional derivative of order q in interval [a, t], f : J × ℝ → ℝ and, IiĪj, Îi : ℝ → ℝ are appropriate functions (here i = 1,2,…, L and j = 1,2,…, M and l = 1,2, …, N, respectively), a = t0 < t1 < … < tL < tL+1 = T, a=t¯0<t¯1<t¯M<t¯M+1=T,a=t^0<t^1<<t^N<t^N+1=T. Here x(ti+)=limε0+x(ti+ε) and x(ti)=limε0x(ti+ε) represent the right and left limits of x(t) at t = ti, respectively, (x(t¯j+),x(t¯j) and (x(t^j+),x(t^j) have similar meaning for x′(t) at t=t¯j and x″(t) at t=t^l, respectively).

Next, take a,t1,t2,tL,t¯1,t¯2,,t¯M,t^1,t^2,,t^N,T to a=t0<t1<<tK<tK+1=T such that

set{t1,t2,,tL,t¯1,t¯2,,t¯M,t^1,t^2,,t^N}=set{t1,t2,tK}

Let J0=[a,t1] and Jk=(tk,tk+1,](k=0,1,2,,K). For each [a,tk] (here k = 0,1,2,…, K), assume [a,tk0][a,tk][a,tk0+1] (here k0 ∈ {1,2,…, L}) and [a,tk1][a,tk][a,t¯k1+1] (here k1 ∈ {1,2,…,M}) and [a,t^k2][a,tk][a,t^k2+1] (here k2 ∈ {1,2,…, N}) respectively.

With simplification of system (1), we get

aDtqx(t)=f(t,x(t)),q(2,3),tJ=[a,T],tti(k=1,2,,L),Δxt=ti=Iix(ti),i=1,2,,L,Δxt=ti=I¯ix(ti),i=1,2,,L,Δxt=ti=I^ix(ti),i=1,2,,L,x(a)=xa,x(a)=x¯a,x(a)=x^a.(2)

Let J0 = [a, t1] and Ji = (ti, ti + 1] (i = 1,2,…, L). Considering some limiting cases in (1), we have

limIi(x(ti))0foralli{1,2,,L}andI¯j(x(t¯j))0forallj{1,2,,M}andI^l(x(t^l))0foralll{1,2,,N}{impulsesystem(1)}
aDtqx(t)=f(t,x(t)),q(2,3),tJ=[a,T],x(a)=xa,x(a)=x¯a,x(a)=x^a.(3)
limI¯j(x(t¯j))0forallj{1,2,,M}andI^l(x(t^l))0foralll{1,2,,N}{impulsesystem(1)}
aDtqx(t)=f(t,x(t)),q(2,3),tJ=[a,T],tti(i=1,2,,L),Δxt=ti=Iix(ti),i=1,2,,L,x(a)=xa,x(a)=x¯a,x(a)=x^a.(4)
limIi(x(ti))0foralli{1,2,,L}andI^l(x(t^l))0foralll{1,2,,N}{impulsesystem(1)}
aDtqx(t)=f(t,x(t)),q(2,3),tJ=[a,T],tt¯j(j=1,2,,M),Δxt=t¯j=I¯jx(t¯j),j=1,2,,M,x(a)=xa,x(a)=x¯a,x(a)=x^a.(5)
limIi(x(ti))0foralli{1,2,,L}andI¯j(x(t¯j))0forallj{1,2,,M}{impulsesystem(1)}
aDtqx(t)=f(t,x(t)),q(2,3),tJ=[a,T],tt^l(l=1,2,,N),Δxt=t^l=I^lx(t^l),l=1,2,,N,x(a)=xa,x(a)=x¯a,x(a)=x^a.(6)
limI^l(x(t^l))0foralll{1,2,,N}{impulsesystem(1)}
aDtqx(t)=f(t,x(t)),q(2,3),tJ=[a,T],tti(i=1,2,,L)andtt¯j(j=1,2,,M),Δxt=ti=Iix(ti),i=1,2,,L,Δxt=t¯j=I¯jx(t¯j),j=1,2,,M,x(a)=xa,x(a)=x¯a,x(a)=x^a.(7)
limI¯j(x(t¯j))0forallj{1,2,,M}{impulsesystem(1)}
aDtqx(t)=f(t,x(t)),q(2,3),tJ=[a,T],tti(i=1,2,,L)andtt^l(l=1,2,,N),Δxt=ti=Iix(ti),i=1,2,,L,Δxt=t^l=I^lx(t^l),l=1,2,,N,x(a)=xa,x(a)=x¯a,x(a)=x^a.(8)
limIi(x(ti))0foralli{1,2,,L}{impulsesystem(1)}
aDtqx(t)=f(t,x(t)),q(2,3),tJ=[a,T],tt¯j(j=1,2,,M)andtt^l(l=1,2,,N),Δxt=t¯j=I¯jx(t¯j),j=1,2,,M,Δxt=t^l=I^lx(t^l),l=1,2,,N,x(a)=xa,x(a)=x¯a,x(a)=x^a.(9)

This means that the solution of (1) satisfies:

(i) limI(x(tj))0foralli{1,2,,L}andI¯j(x(t¯j))0forallj{1,2,,M}andI^l(x(t^j))0foralll{1,2,,N}{thesolutionofsystem(1)}={thesolutionofsystem(3)),

(ii) limI¯j(x(tj))0forallj{1,2,,M}andI^l(x(t^l))0foralll{1,2,,N}{thesolutionofsystem(1)}={thesolutionofsystem(4)),

(iii) limIi(x(ti))0foralli{1,2,,L}andI^l(x(t^l))0foralll{1,2,,N}{thesolutionofsystem(1)}={thesolutionofsystem(5)),

(iv) limIi(x(ti))0foralli{1,2,,L}andI¯l(x(t^j))0forallj{1,2,,M}{thesolutionofsystem(1)}={thesolutionofsystem(6)),

(v) limI^l(x(t^i))0foralll{1,2,,N}{thesolutionofsystem(1)}={thesolutionofsystem(7)),

(vi) limI¯j(x(t¯i))0forallj{1,2,,M}{thesolutionofsystem(1)}={thesolutionofsystem(8)),

(vii) limIi(x(ti))0foralli{1,2,,L}{thesolutionofsystem(1)}={thesolutionofsystem(9)).

Thus, we present the definition of solution for (1) as follows

Definition 1.1

A function z(t) : [a, T] → ℝ is said to be the solution of impulsive system (1) if z(a) = xa, z(a)=x¯a and z(a)=x^a, the equation conditionaDtqz(t)=f(t,z(t))for eacht ∈ (a, T] is verified, impulsive conditionsΔz|t=ti=Ii(z(ti))(here i = 1,2,…, L), Δz|t=t¯i=I¯i(z(t¯i)) (here j = 1,2, …,M) andΔz|t=t^l=I^i(z(t^i)) (here l = 1,2,…,N) are satisfied, the restriction of to the intervalJk (here k = 0,1,2,…, K) is continuous, and conditions (i)-(vii) hold.

Define a function

x~(t)=x(tk+)+x(tk+)(ttk)+x(tk+)2!(ttk)2+1Γ(q)tkt(ts)q1f(s,x(s))dsfort(tk,tk+1].

By the definition of Caputo fractional derivative, we have

[aDtqx~(t)]t(tk,tk+1]=aDtqx(tk+)+x(tk+)(ttk)+x(tk+)2!(ttk)2+1Γ(q)tkt(ts)q1f(s,x(s))dst(tk,tk+1]=aDtq1Γ(q)tkt(ts)q1f(s,x(s))dst(tk,tk+1]=tkDtq1Γ(q)tkt(ts)q1f(s,x(s))dst(tk,tk+1]=f(t,x(t))|t(tk,tk+1].

Therefore, x~(t) can meet the condition of fractional derivative and impulsive conditions in (1). But, x~(t) is only considered as an approximate solution of (1) since it doesn’t satisfy conditions (i)-(vii).

Next, we provide some definitions and conclusions in Section 2, and prove the formula of general solution for (1) in Section 3. Finally, an example is provided to expound the main result in Section 4.

2 Preliminaries

Definition 2.1

Definition 2.1 ([2])

The fractional integral of order q for function x is defined as

aItqx(t)=1Γ(q)atx(s)(ts)1qds,t>a,q>0,

where Γ is the gamma function.

Definition 2.2

Definition 2.2 ([2])

The Caputo fractional derivative of order q for a function x can be written as

aDtqx(t)=1Γ(nq)atx(n)(s)(ts)q+1nds=aItnqx(n)(t),t>a,0n1<q<n.
Lemma 2.3

Lemma 2.3 ([39])

If the function h(t, x) is continuous, then the initial value problem

aDtqx(t)=h(t,x(t)),q(n,n+1],nR+{0},x(k)(a)=xak,k=0,1,2,,n.

is equivalent to the following nonlinear Volterra integral equation of the second kind,

x(t)=k=0nxakk!(ta)k+1Γ(q)at(ts)q1h(s,x(s))ds,

and its solutions are continuous.

Lemma 2.4

Lemma 2.4 ([32])

Let q ∈ (0, 1) and ξ is a constant. Impulsive system

0Dtqu(t)=h(t,u(t)),tJ=[0,T],ttk,k=1,2,,m,Δut=tk=Iku(tk),t=tk,k=1,2,,m,u(0)=u0.

is equivalent to the fractional integral equation

u(t)=u0+1Γ(q)0t(ts)q1h(s,(u(s))ds,fort[0,t1],u0+k=1nIk(u(tk))+1Γ(q)0t(ts)q1h(s,u(s))ds+ξΓ(q)k=1nIk(u(tk))0tk(tks)q1h(s,u(s))ds+tkt(ts)q1h(s,u(s))ds0t(ts)q1h(s,u(s))dsfort(tn,tn+1],1nm,(10)

provided that the integral in (10) exists.

3 Main results

For convenience, let f = f(s, x(s)) and i=10yi=0 in this section.

Lemma 3.1

Let q ∈ (2, 3) and ξ0is a constant. System (4) is equivalent to the fractional integral equation

x(t)=xa+x¯a(ta)+x^a2!(ta)2+i=1kIix(ti)+1Γ(q)at(ts)q1fds+i=1kξ0Ii(x(ti))1Γ(q)ati(tis)q1fds+tit(ts)q1fdsat(ts)q1fds+(tti)Γ(q1)ati(tis)q2fds+(tti)22!Γ(q2)ati(tis)q3fdsfort(tk,tk+1],k=0,1,2,,L.(11)

provided that the integral in (11) exists.

Proof

“Necessity”, for system (4), there exist an implicit condition

limIix(ti)0foralli{1,2,,L}{system(4)}aDtq(t)=f(t,x(t)),q(2,3),tJ=[a,T],x(a)=xa,x(a)=x¯a,x(a)=x^a.

That is

limIix(ti)0foralli{1,2,,L}{thesolutionofsystem(4)}{thesolutionofsystem(3)}.(12)

In fact, we can verify that Eq. (11) satisfies condition (12).

Next, we can obtain x(tk+)x(tk)=Ik(x(tk)) That is, Eq. (11) satisfies the impulsive condition of system (4).

Finally, using Eq. (11) for each t ∈ (tk, tk+1] (where k = 0,1,…, L), we have

[aDtqx(t)]t(tk,tk+1]=aDtqxa+x¯a(ta)+x^a2!(ta)2+i=1kIi(x(ti))+1Γ(q)at(ts)q1fds+i=1kξ0Ii(x(ti))1Γ(q)ati(tis)q1fds+tit(ts)q1fdsat(ts)q1fds+(tti)Γ(q1)ati(tis)q2fds+(tti)2!Γ(q2)ati(tis)q3fds=f(t,x(t))ta+i=1kξ0Ii(x(ti))Γ(q)tiDtqtit(ts)q1fdsaDtqat(ts)q1fds=f(t,x(t))ta+i=1kξ0Ii(x(ti))[f(t,x(t))ttif(t,x(t))ta]t(tk,tk+1]=f(t,x(t))t(tk,tk+1].

So, Eq. (11) satisfies the condition of fractional derivative in (4). Thus, Eq. (11) satisfies all conditions of system (4).

“Sufficiency”, we will prove that the solutions of (4) satisfy Eq. (11) by using mathematical induction. For t ∈ [a, t1], it is certain that the solution of system (4) satisfies Eq. (11) by Lemma 2.3 and

x(t)=xa+x¯a(ta)+x^a2!(ta)2+1Γ(q)at(ts)q1fds.(13)

Using (13), we have

x(t1+)=x(t1)+I1(x(t1))=xa+x¯a(t1a)+x^a2!(t1a)2+I1(x(t1))+1Γ(q)at1(t1s)q1fds,x(t1+)=x(t1)=x¯a+x^a(t1a)+1Γ(q1)at1(t1s)q2fds,x(t1+)=x(t1)=x^a+1Γ(q2)at1(t1s)q3fds.

Therefore, the approximate solution x~(t) is given by

x~(t)=x(t1+)+x(t1+)(tt1)+x(t1+)2!(tt1)2+1Γ(q)t1t(ts)q1fds=xa+x¯a(ta)+x^a2!(ta)2+I1(x(t1))+1Γ(q)at1(t1s)q1fds+t1t(ts)q1fds+(tt1)Γ(q1)at1(t1s)q2fds+(tt1)22!Γ(q2)at1(t1s)q3fdsfort(t1,t2].(14)

Let e1(t)=x(t)x~(t), for t ∈ (t1, t2]. Due to

limI1(x(t1))0x(t)=xa+x¯a(ta)+x^a2!(ta)2+1Γ(q)at(ts)q1fdsfort(t1,t2)],

we get

limI1(x(t1))0e1(t)=limI1(x(t1))0{x(t)x~(t)}=1Γ(q)at1(t1s)q1fds+t1t(ts)q1fdsat(ts)q1fds(tt1)Γ(q)at1(t1s)q2fds(tt1)22!Γ(q2)at1(t1s)q3fds.(15)

Then, by (15), we assume

e1(t)=σI1(x)(t1)1Γ(q)at1(t1s)q1fds+t1t(t1s)q1fdsat(t1s)q1fds(tt1)Γ(q1)at1(t1s)q2fds(tt1)22!Γ(q2)at1(t1s)q3fds.(16)

where σ is an undetermined function with σ(0) = 1. Therefore

x(t)=x~(t)+e1(t)=xa+x¯a(ta)+x^a2!(ta)2+I1(x(t1))+1Γ(q)at(ts)q1fds+[1σ(I1(x(t1)))]1Γ(q)at1(t1s)q1fds+t1t(ts)q1fdsat(ts)q1fds+(tt1)Γ(q1)at1(t1s)q2fds+(tt1)22!Γ(q2)at1(t1s)q3fdsfort(t1,t2].

Let θ (z) = 1 − σ (z) for z ∈ ℝ in the above equation, then

x(t)=xa+x¯a(ta)+x^a2!(ta)2+I1(x(t1))+1Γ(q)at(ts)q1fds+θ(I1(x(t1)))1Γ(q)at1(t1s)q1fds+t1t(ts)q1fdsat(ts)q1fds+(tt1)Γ(q1)at1(t1s)q2fds+(tt1)22!Γ(q2)at1(t1s)q3fdsfort(t1,t2].(17)

Using (17), we get

x(t2+)=x(t2)+I2x(t2)=xa+x¯a(t2a)+x^a2!(t2a)2+i=1,2Iix(ti)+1Γ(9)at2(t2s)q1fds+θI1(x(t1))1Γ(q)at1(t1s)q1fds+t1t2(t2s)q1fdsat2(t2s)q1fds+(t2t1)Γ(q1)at1(t1s)q2fds+(t2t1)22!Γ(q2)at1(t1s)q3fds,
x(t2+)=x(t2)=x¯a+x^a(t2a)+1Γ(q1)at2(t2s)q2fds+θI1(x(t1))1Γ(q1)at1(t1s)q2fds+t1t2(t2s)q2fdsat2(t2s)q2fds+(t2t1)Γ(q2)at1(t1s)q3fds,
x(t2+)=x(t2)=x^a+1Γ(q2)at2(t2s)q3fds+θI1(x(t1))Γ(q2)at1(t1s)q3fds+t1t2(t2s)q3fdsat2(t2s)q3fds.

Thus,

x~(t)=x(t2+)+x(t2+)(tt2)+x(t2+)2!(tt2)2+1Γ(q)t2t(ts)q1fds=xa+x¯a(ta)+x^a2!(ta)2+I1x(t1)+I2x(t2)+(tt2)Γ(q1)at2(t2s)q2fds+(tt2)22!Γ(q2)at2(t2s)q3fds+1Γ(q)at2(t2s)q1fds+t2t(ts)q1fds+θI1(x(t1))1Γ(q)at1(t1s)q1fds+t1t2(t2s)q1fdsat2(t2s)q1fds
+(tt1)Γ(q1)at1(t1s)q2fds+(tt1)22!Γ(q2)at1(t1s)q3fds+(tt2)Γ(q1)t1t2(t2s)q2fds+(tt2)22!Γ(q2)t1t2(t2s)q3fds(tt2)Γ(q1)at2(t2s)q2fds(tt2)22!Γ(q2)at2(t2s)q3fdsfort(t2,t3].(18)

Let e2(t)=x(t)x~(t), for t ∈ (t2, t3]. By(17), the exact solution x(t) of system (4) satisfies

limI1x(t1)0,I2x(t2)0x(t)=xa+x¯a(ta)+x^a2!(ta)2+1Γ(q)at(ts)q1fdsfort(t2,t3],
limI1x(t1)0x(t)=xa+x¯a(ta)+x^a2!(ta)2+I2x(t2)+1Γ(q)at(ts)q1fds+θI2(x(t2))1Γ(q)at2(t2s)q1fds+t2t(ts)q1fdsat(ts)q1fds+(tt2)Γ(q1)at2(t2s)q2fds+(tt2)22!Γ(q2)at2(t2s)q3fdsfort(t2,t3],

Thus,

limI2x(t2)0x(t)=xa+x¯a(ta)+x^a2!(ta)2+I1x(t1)+1Γ(q)at(ts)q1fds+θ(I1(x(t1)))1Γ(q)at1(t1s)q1fds+t1t(ts)q1fdsat(ts)q1fds+(tt1)Γ(q1)at1(t1s)q2fds+(tt1)22!Γ(q2)at1(t1s)q3fdsfortt2,t3.(19)
limI1xt10,I2xt20e2t=limI1xt10,I2xt20xtx~t=1Γqat2t2sq1fds+t2ttsq1fdsattsq1fdstt2Γq1at2t2sq2fdstt222!Γq2at2t2sq3fdsfortt2,t3,
limI1xt10,e2t=limI1xt10xtx~t=1+θ(I2(x(t2)))]1Γqat2t2sq1fds+t2ttsq1fdsattsq1fds+tt2Γq1at2t2sq2fds+tt222!Γq2at2t2sq3fdsfort(t2,t3],(20)
limI2xt20e2t=limI2xt20xtx~t=1+θ(I1(x(t1)))]1Γqat2t2sq1fds+t2ttsq1fdsattsq1fds+tt2Γq1at2t2sq2fds+tt222!Γq2at2t2sq3fds
=θI1xt11Γqat2t2sq1fds+t2ttsq1fdst2ttsq1fds+tt2Γq1t1t2t2sq2fs,xsds+tt222!Γq2t1t2t2sq3fs,xsdsfortt2,t3.(21)

By (19)-(21), we obtain

e2t=[1+θI1xt1+θI2xt21Γqat2t2sq1fds+t2ttsq1fdsattsq1fds+tt2Γq1at2t2sq2fds+tt222!Γq2at2t2sq3fdsθI1xt11Γqt1t2t2sq1fds+t2ttsq1fdst1ttsq1fds+tt2Γq1t1t2t2sq2fds+tt222!Γq2t1t2t2sq3fdsfortt2,t3.

Thus,

xt=x~t+e2t=xa+x¯ata+x^a2!ta2+I1xt1+I2(x(t2))+1Γqattsq1fds+θI1xt11Γqat1t1sq1fds+t1ttsq1fdsattsq1fds+tt1Γq1at1t1sq2fds+tt122!Γq2at1t1sq3fds+θI2xt21Γqat2t2sq1fds+t2ttsq1fdsattsq1fds+tt2Γq1at2t2sq2fds+tt22!Γq2at2t2sq3fdsfort(t2,t3].(22)

Letting t2t1, we have

limt2t1aDtaxt=ft,xt,q2,3,tJ=a,t3,andtt1,t2,Δxt=tk=Ikxtk,k=1,2,xa=xa,xa=x¯a,xa=x^a.aDtaxt=ft,xt,q2,3,tJ=a,t3,andtt1,Δxt=t1=I1xt1+I2xt2,xa=xa,xa=x¯a,xa=x^a.(23)

Using (17) and (22) for (23), we obtain

θ(I1(x(t1))+I2(x(t2)))=θ(I1(x(t1)))+θ(I2(x(t2)))forI1(x(t1)),I2(x(t2))R.(24)

Therefore θ (z) = ξ0z for ∀z ∈ ℝ (where ξ0 is a constant). Thus

x(t)=xa+x¯a(ta)+x^a2!(ta)2+I1x(t1)+1Γ(q)at(ts)q1fds+ξ0I1(x(t1))1Γ(q)at1(t1s)q1fds+t1t(ts)q1fdsat(ts)q1fds+(tt1)Γ(q1)at1(t1s)q2fds+(tt1)22!Γ(q2)at1(t1s)q3fdsfort(t1,t2].(25)

and

x(t)=xa+x¯a(ta)+x^a2!(ta)2+I1x(t1)+I2x(t2)+1Γ(q)at(ts)q1fds+ξ0I1(x(t1))1Γ(q)at1(t1s)q1fds+t1t(ts)q1fdsat(ts)q1fds+(tt1)Γ(q1)at1(t1s)q2fds+(tt1)22!Γ(q2)at1(t1s)q3fds+ξ0I2(x(t2))1Γ(q)at2(t2s)q1fds+t2t(ts)q1fdsat(ts)q1fds+(tt2)Γ(q1)at2(t2s)q2fds+(tt2)22!Γ(q2)at2(t2s)q3fdsfort(t2,t3].(26)

Next, suppose

x(t)=xa+x¯a(ta)+x^a2!(ta)2+i=1kIix(ti)+1Γ(q)at(ts)q1fds+i=1kξ0Ii(x(ti))1Γ(q)ati(tis)q1fds+tit(ts)q1fdsat(ts)q1fds+(tti)Γ(q1)ati(tis)q2fds+(tti)22!Γ(q2)ati(tis)q3fdsfort(tk,tk+1].(27)

Using (27), we get

x(tk+1+)=x(k+1)+Ik+1x(tk+1)=xa+x¯a(tk+1a)+x^a2!(tk+1a)2+i=1k+1Iix(ti)+1Γ(q)atk+1(tk+1s)q1fds+i=1kξ0Ii(x(ti))1Γ(q)ati(tis)q1fds+titk+1(tk+1s)q1fdsatk+1(tk+1s)q1fds+(tk+1ti)Γ(q1)ati(tis)q2fds+(tk+1ti)22!Γ(q2)ati(tis)q3fds,
x(tk+1+)=x(k+1)=x¯a+x^a(tk+1a)+1Γ(q1)atk+1(tk+1s)q2fds+i=1kξ0Ii(x(ti))1Γ(q1)ati(tis)q2fds+titk+1(tk+1s)q2fdsatk+1(tk+1s)q2fds+(tk+1ti)Γ(q2)ati(tis)q3fds,
x(tk+1+)=x(k+1)=x^a+1Γ(q2)atk+1(tk+1s)q3fds+i=1kξ0Ii(x(ti))Γ(q2)ati(tis)q3fds+titk+1(tk+1s)q3fdsatk+1(tk+1s)q3fds.

Thus,

x~(t)=x(tk+1+)+x(tk+1+)(ttk+1)+x(tk+1+)2!(ttk+1)2+1Γ(q)tk+1t(ts)q1fds=xa+x¯a(ta)+x^a2!(ta)2+i=1k+1Iix(ti)+(ttk+1)Γ(q1)atk+1(tk+1s)q2fds+(ttk+1)22!Γ(q2)atk+1(tk+1s)q3fds+1Γ(q)atk+1(tk+1s)q1fds+tk+1t(ts)q1fds+i=1kξ0Ii(y(ti))1Γ(q)ati(tis)q1fds+titk+1(tk+1s)q1fdsatk+1(tk+1s)q1fds+(tti)Γ(q1)ati(tis)q2fds+(tti)22!Γ(q2)ati(tis)q3fds+(ttk+1)Γ(q1)titk+1(tk+1s)q2fdsatk+1(tk+1s)q2fds+(ttk+1)22!Γ(q2)titk+1(tk+1s)q3fdsatk+1(tk+1s)q3fdsfort(tk+1,tk+2].(28)

Let ek+1(t)=x(t)x~(t) for t ∈ (tk+1, tk+2]. By (27), the exact solution x(t) of system (4) satisfies

limIi(x(ti))0,foralli{1,...,k+1}x(t)=xa+x¯a(ta)+x^a2!(ta)2+1Γ(q)at(ts)q1fdsfort(tk+1,tk+2],
limIp(y(tp))0,forp{1,2,...,k+1}x(t)=xa+x¯a(ta)+x^a2!(ta)2+1ik+1andipIix(ti)1Γ(q)at(ts)q1fds+1ik+1andipξ0Ii(x(ti))1Γ(q)ati(tis)q1fds+tit(ts)q1fdsat(ts)q1fds+(tti)Γ(q1)ati(tis)q2fds+(tti)22!Γ(q2)ati(tis)q3fdsfort(tk+1,tk+2].

Then,

limIi(x(ti))0,foralli{1,...,k+1}ek+1(t)=limIi(x(ti))0,foralli{1,...,k+1}{x(t)x^(t)}=1Γ(q)atk+1(tk+1s)q1fds+tk+1t(ts)q1fdsat(ts)q1fds(ttk+1)Γ(q1)atk+1(tk+1s)q2fds(ttk+1)22!Γ(q2)atk+1(tk+1s)q3fds,(29)
limIp(y(tp))0,forp{1,2,...,k+1}ek+1(t)=limIp(y(tp))0,forp{1,2,...,k+1}{x(t)x^(t)}=1Γ(q)atk+1(tk+1s)q1fds+tk+1t(ts)q1fdsat(ts)q1fds+1ik+1andipξ0Ii(x(ti))1Γ(q)atk+1(tk+1s)q1fds+tk+1t(ts)q1fds
at(ts)q1fdstitk+1(tk+1s)q1fdstk+1t(ts)q1fds+tit(ts)q1fds(ttk+1)Γ(q1)titk+1(tk+1s)q2fdsatk+1(tk+1s)q2fds(ttk+1)22!Γ(q2)titk+1(tk+1s)q3fdsatk+1(tk+1s)q3fds(ttk+1)Γ(q1)atk+1(tk+1s)q2fds(ttk+1)22!Γ(q2)atk+1(tk+1s)q3fds.(30)

By (29) and (30), we obtain

ek+1(t)=1+i=1k+1ξ0Ii(x(ti))Γ(q)atk+1(tk+1s)q1fds+tk+1t(ts)q1fdsat(ts)q1fdsi=1k+1ξ0Ii(x(ti))1Γ(q)titk+1(tk+1s)q1fds+tk+1t(ts)q1fdstit(ts)q1fds+(ttk+1)Γ(q1)titk+1(tk+1s)q2fdsatk+1(tk+1s)q2fds+(ttk+1)22!Γ(q2)titk+1(tk+1s)q3fdsatk+1(tk+1s)q3fds(ttk+1)Γ(q1)atk+1(tk+1s)q2fds(ttk+1)22!Γ(q2)atk+1(tk+1s)q3fds.(31)

Thus,

x(t)=x~(t)+ek+1(t)=xa+x¯a(ta)+x^a2!(ta)2+i=1k+1Iix(ti)+1Γ(q)at(ts)q1fds+i=1k+1ξ0Ii(x(ti))1Γ(q)ati(tis)q1fds+tit(ts)q1fdsat(ts)q1fds+(tti)Γ(q1)ati(tis)q2fds+(tti)22!Γ(q2)ati(tis)q3fdsfort(tk+1,tk+2].

Therefore, the solutions of system (4) satisfy Eq. (11). So, system (4) is equivalent to Eq. (11). The proof is now completed. □

With similarity to Lemma 3.1, the following two conclusions can be proved.

Lemma 3.2

Let q ∈ (2,3) and ξ1 is a constant. System (5) is equivalent to the fractional integral equation

x(t)=xa+x¯a(ta)+x^a2!(ta)2+j=1kI¯jx(t¯j)(tt¯j)+1Γ(q)at(ts)q1fds+j=1kξ1I¯j(x(t¯j))1Γ(q)at¯j(t¯js)q1fds+t¯jt(ts)q1fdsat(ts)q1fds+(tt¯j)Γ(q1)at¯j(t¯js)q2fds+(tt¯j)22!Γ(q2)at¯j(t¯js)q3fdsfort(t¯k,t¯k+1],k=0,1,2,...,M.(32)

provided that the integral in (32) exists.

Lemma 3.3

Let q ∈ (2, 3) ξ2and is a constant. System (6) is equivalent to the fractional integral equation

x(t)=xa+x¯a(ta)+x^a2!(ta)2+12!l=1kI^lx(t^l)(tt^l)2+1Γ(q)at(ts)q1fds+l=1kξ2I^l(x(t^l))1Γ(q)at^l(t^ls)q1fds+t^lt(ts)q1fdsat(ts)q1fds+(tt^l)Γ(q1)at^l(t^ls)q2fds+(tt^l)22!Γ(q2)at^l(t^ls)q3fdsfort(t^k,t^k+1],k=0,1,2,...,N.(33)

provided that the integral in (33) exists.

Corollary 3.4

Let q ∈ (2, 3) and ξ0is a constant. If a function x is the general solution of system (4) then

x(t)=x^a+1Γ(q2)at(ts)q3f(s,x(s))ds+ξ0i=1kIi(x(ti))Γ(q2)ati(tis)q3fds+tit(ts)q3fdsat(ts)q3fdsfort(tk,tk+1],k=0,1,2,...,L.
Corollary 3.5

Let q ∈ (2, 3) and ξ1is a constant. If a function x is the general solution of system (5) then

x(t)=x^a+1Γ(q2)at(ts)q3fds+ξ1j=1kI¯j(x(t¯j))Γ(q2)at¯j(t¯js)q3fds+t¯jt(ts)q3fdsat(ts)q3fdsfort(t¯k,t¯k+1],k=0,1,2,...,M.
Corollary 3.6

Let q ∈ (2, 3) and ξ2is a constant. If a function x is the general solution of system (6) then

x(t)=x^a+l=1kI^lx(t^l)+1Γ(q2)at(ts)q3fds+ξ2l=1kI^l(x(t^l))Γ(q2)at^l(t^ls)q3fds+t^lt(ts)q3fdsat(ts)q3fdsfort(t^k,t^k+1],k=0,1,2,...,N.
Remark 3.7

ImpulsesΔxt=ti,Δxt=t¯jandΔxt=t^lhave similar effect on x″(t) of (3) by Corollaries 3.4-3.6. Thus, we will considerΔxt=tiandΔxt=t¯jas some special impulsesΔxt=t^lfor system (3).

Lemma 3.8

Let q ∈ (2, 3) and ξb (where b ∈ {0,1,2}) are three constants. If a function x is the general solution of system (1) then

x(t)=x^a+l=1k2I^lx(t^l)+1Γ(q2)at(ts)q3fds+ξ0i=1k0Ii(x(ti))Γ(q2)ati(tis)q3fds+tit(ts)q3fdsat(ts)q3fds+ξ1j=1k1I¯j(x(t¯j))Γ(q2)at¯j(t¯js)q3fds+t¯jt(ts)q3fdsat(ts)q3fds+ξ2l=1k2I^l(x(t^l))Γ(q2)at^l(t^ls)q3fds+t^lt(ts)q3fdsat(ts)q3fdsfortJk,k=0,1,2,...,K.(34)
Proof

By Definition 2.2, we have

{system(1)}aDtq2x(t)=f(t,x(t)),q(2,3),tJ=[a,T],tti(i=1,2,...,L)andtt¯j(j=1,2,...,M)andtt^l(l=1,2,...,N),Δxt=ti=Iix(ti),i=1,2,...,L,Δxt=t¯j=I¯jx(t¯j),j=1,2,...,M,Δxt=t^l=I^lx(t^l),l=1,2,,...,N,x(a)=xa,x(a)=x¯a,x(a)=x^a.

Moreover, Δxt=ti and Δxt=t¯j are considered as impulse Δxt=t^l by Remark 3.7. Thus, using Lemma 2.4 and Corollaries 3.4-3.6, Eq. (34) can be obtained. □

Theorem 3.9

Let q ∈ (2,3) and ξb (where b ∈ {0, 1, 2}) are three constants. System (1) is equivalent to the fractional integral equation

x(t)=xa+x¯a(ta)+x^a2!(ta)2+i=1k0Iix(ti)+j=1k1I¯jx(t¯j)(tt¯j)+12!l=1k2I^lx(t^l)(tt^l)2+1Γ(q)at(ts)q1fds+i=1k0ξ0Ii(x(ti))1Γ(q)ati(tis)q1fds+tit(ts)q1fdsat(ts)q1fds+(tti)Γ(q1)ati(tis)q2fds+(tti)22!Γ(q2)ati(tis)q3fds+j=1k1ξ1I¯j(x(t¯j))1Γ(q)at¯j(t¯js)q1fds+t¯jt(ts)q1fdsat(ts)q1fds+(tt¯j)Γ(q1)at¯j(t¯js)q2fds+(tt¯j)22!Γ(q2)at¯j(t¯js)q3fds+l=1k2ξ2I^l(x(t^l))1Γ(q)at^l(t^ls)q1fds+t^lt(ts)q1fdsat(ts)q1fds+(tt^l)Γ(q1)at^l(t^ls)q2fds+(tt^l)22!Γ(q2)at^l(t^ls)q3fdsfortJk,(35)

here k ∈{0, 1, 2,…, K}, provided that the integral in (35) exists.

Proof

For tJ0, it is clear that system (1) is equivalent to

x(t)=xa+x¯a(ta)+x^a2!(ta)2+1Γ(q)at(ts)q1fdsfortJ0.

For tJ′1 (1 ≤ kK), by Lemma 3.8, we have

x(t)=x^a+l=1k2I^lx(t^l)+1Γ(q2)at(ts)q3fds+ξ0i=1k0Ii(x(ti))Γ(q2)ati(tis)q3fds+tit(ts)q3fdsat(ts)q3fds+ξ1j=1k1I¯j(x(t¯j))Γ(q2)at¯j(t¯js)q3fds+t¯jt(ts)q3fdsat(ts)q3fds+ξ2l=1k2I^l(x(t^l))Γ(q2)at^l(t^ls)q3fds+t^lt(ts)q3fdsat(ts)q3fds.

Integrating both sides of the above equation twice, we get

x(t)=C0+C1t+x^a2!t2+12!t2l=1k2I^lx(t^l)+1Γ(q)at(ts)q1fds+i=1k0ξ0Ii(x(ti))1Γ(q)tit(ts)q1fdsat(ts)q1fds+t22!Γ(q2)ati(tis)q3fds+j=1k1ξ1I¯j(x(t¯j))1Γ(q)t¯jt(ts)q1fdsat(ts)q1fds+t22!Γ(q2)at¯j(t¯js)q3fds+l=1k2ξ2I^l(x(t^l))1Γ(q)t^lt(ts)q1fdsat(ts)q1fds+t22!Γ(q2)at^l(t^ls)q3fds,

here C, C1 are two constants. Supposing I¯jx(tj)=0,I^lx(t^l)=0;Iix(ti)=0,I^lx(t^l)=0 and Iix(ti)=0,I¯jx(tj)=0 (here i = 1, 2,…, k0, j = 1, 2, …, k1, l = 1, 2,…,k2) respectively, by Lemmas 3.1-3.3, we obtain

C0=xax¯aa+x^a2!a2+i=1k0Iix(ti)j=1k1I¯ix(t¯j)t¯j+12!l=1k2I^lx(t^l)t^l2+i=1k0ξIi(x(ti))1Γ(q)ati(tis)q1fdstiΓ(q1)ati(tis)q2fds+ti22!Γ(q2)ati(tis)q3fds+j=1k1ξ1I¯j(x(t¯j))1Γ(q)at¯j(t¯js)q1fdst¯jΓ(q1)at¯j(t¯js)q2fds+t¯j22!Γ(q2)at¯j(t¯js)q3fds+l=1k2ξ2I^l(x(t^l))1Γ(q)at^l(t^ls)q1fdst^lΓ(q1)at^l(t^ls)q2fds+t^l22!Γ(q2)at^l(t^ls)q3fds,

and

C0=x¯aax^a+j=1k1I¯jx(t¯j)t^l+l=1k2I^lx(t^l)+i=1k0ξ0Ii(x(ti))1Γ(q1)ati(tis)q2fdstiΓ(q2)ati(tis)q3fds+j=1k1ξ1I¯j(x(t¯j))1Γ(q1)at¯j(t¯js)q2fdst¯jΓ(q2)at¯j(t¯js)q3fds+l=1k2ξ2I^l(x(t^l))1Γ(q1)at^l(t^ls)q2fdst^lΓ(q2)at^l(t^ls)q3fds.

Thus, for tJk (here k = 1, 2,…, K), we get

x(t)=xax¯a(ta)+x^a2!(ta)2+i=1k0Iix(ti)+j=1k1I¯jx(t¯j)(tt¯j)+12!l=1k2I^lx(t^l)(tt^l)2+1Γ(q)at(ts)q1fds+i=1k0ξ0Ii(x(ti))1Γ(q)ati(tis)q1fds+tit(ts)q1fdsat(ts)q1fds+(tti)Γ(q1)ati(tis)q2fds+(tti)22!Γ(q2)ati(tis)q3fds+j=1k1ξ1I¯j(x(t¯j))1Γ(q)at¯j(t¯js)q1fds+t¯jt(ts)q1fdsat(ts)q1fds+(tt¯j)Γ(q1)at¯j(t¯js)q2fds+(tt¯j)22!Γ(q2)at¯j(t¯js)q3fds+l=1k2ξ2I^l(x(t^l))1Γ(q)at^l(t^ls)q1fds+t^lt(ts)q1fdsat(ts)q1fds+(tt^l)Γ(q1)at^l(t^ls)q2fds+(tt^l)22!Γ(q2)at^l(t^ls)q3fds.

So, the solution of system (1) satisfies Eq. (35).

Next, we can verify that Eq. (35) satisfies all conditions (including conditions (i)-(vii)) in system (1). So, system (1) is equivalent to Eq. (35). The proof is completed. □

Remark 3.10

For impulsive system (1), we have

x(3)(t)=f(t,x(t)),tJ=[a,T],tti(i=1,2,,L)andtt¯j(j=1,2,,M)andtt^l(l=1,2,,N),Δxt=ti=Iix(tj)i=1,2,,L,Δxt=t¯j=I¯ix(t¯j)j=1,2,,M,Δxt=t^l=I^lx(t^l)l=1,2,,N,x(a)=xa,x(a)=x¯a,x(a)=x^a.(36)

On the other hand, using (35), we get

limq3x(t)=xa+x¯a(ta)+x^a2!(ta)2+12at(ts)2fds,fortJ0,xa+x¯a(ta)+x^a2!(ta)2+i=1k0Iix(ti)+j=1k1I¯jx(t¯j)(tt¯j)+12!l=1k2I^lx(t^l)(tt^l)2+12at(ts)2fds,fortJk,k=1,2,K.(37)

Moreover, we can verify thatEq. (37)is the solution of (36), and indirectly supports our results.

Corollary 3.11

Let q ∈ (2, 3) and ξb (where b ∈ {0,1,2}) are three constants. System (2) is equivalent to the fractional integral equation

x(t)=xa+x¯a(ta)+x^a2!(ta)2+i=1kIix(ti)+I¯ix(t¯i)(tt¯i)+12!I^ix(ti)(tti)2+1Γ(q)at(ts)q1fds+i=1kξ0Iix(ti)+ξ1I¯ix(ti)+ξ2I^ix(ti)×1Γ(q)ati(tis)q1fds+tit(ts)q1fdsat(ts)q1fds+(tti)Γ(q1)ati(tis)q2fds+(tti)22!Γ(q2)ati(tis)q3fdsfortJk,k=0,1,2,,K.(38)

provided that the integral in (38) exists.

4 Example

Example 4.1

The analytical solution of system (1) is difficult to obtain when f is a nonlinear function in (1). So, let us consider a linear impulsive system.

0Dt9/4x(t)=t,t[0,2]{1},x(1+)=x(1)+I(x(1)),x(1+)=x(1)+I¯(x(1)),x(1+)=x(1)+I^(x(1)),x(0)=x0,x(0)=x¯0,x(0)=x^0.(39)

Next, we give the general solution by

x(t)=x0+x¯0t+x^02!t2+1Γ(94)169×13t134fort[0,1],x0+x¯0t+x^02!t2+I(x(1))+I¯(x(1))(t1)+12!I^(x(1))(t1)2+1Γ(94)169×13t134t0+ξ0I(x(1))+ξ1I¯(x(1))+ξ2I^(x(1))1Γ(94)169×13+1Γ(94)99×13(t1)94(4t+9)t11Γ(94)169×13t134t0+(t1)Γ(94+1)t1+(t1)22!Γ(94)t1fort(1,2].(40)

where ξ0, ξ1and ξ2are arbitrary constants.

Next, forEq. (40), we have

0Dt94x(t)=0Dt94x0+x¯0t+x^02!t2+1Γ(94)169×13t134=tfort[0,1],

and

0Dt94x(t)=0Dt94x0+x¯0t+x^02!t2+I(x(1))+I¯(x(1))(t1)+12!I^(x(1))(t1)2+1Γ(94)169×13t134t0+ξ0I(x(1))+ξ1I¯(x(1))+ξ2I^(x(1))1Γ(94)169×13+1Γ(94)49×13(t1)94(4t+9)t11Γ(94)169×13t134t0+(t1)Γ(94+1)t1+(t1)22!Γ(94)t1t(1,2]=0Dt941Γ(94)169×13t134t0+ξ0I(x(1))+ξ1I¯(x(1))+ξ2I^(x(1))Γ(94)49×13(t1)94(4t+9)t14t134t0t(1,2]=tt[0,2]t(1,2]+ξ0I(x(1))+ξ1I¯(x(1))+ξ2I^(x(1))[tt(1,2]tt[0,2]]t(1,2]=t,t(1,2].

So, Eq. (40)satisfies Caputo fractional derivative condition in (39).

Secondly, we can verify thatEq. (40)satisfies

x(1+)=x(1)+I(x(1)),x(1+)=x(1)+I¯(x(1))andx(1+)=x(1)+I^(x(1)).

Moreover, we can verify thatEq. (40)satisfies the corresponding conditions (i)-(vii) of (39). Therefore, Eq. (40)is the general solution of (39).


E-mail: ,

Acknowledgement

The authors are deeply grateful to the anonymous referees for their kind comments, correcting errors and improving written language, which have been very useful for improving the quality of this paper. The work described in this paper is financially supported by the National Natural Science Foundation of China (Grant No. 21576033) and the Natural Science Foundation of Jiangxi Province (Grant No. 20151BAB207013) and Jiujiang University Research Foundation (Grant No. 8400183).

References

[1] Podlubny I., Fractional Differential Equations, Academic Press, San Diego, 1999Suche in Google Scholar

[2] Kilbas A.A., Srivastava H.H., Trujillo J.J., Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006Suche in Google Scholar

[3] Baleanu D., Diethelm K., Scalas E., Trujillo J.J., Fractional Calculus Models and Numerical Methods, Series on Complexity, Nonlinearity and Chaos, World Scientific, Singapore, 201210.1142/8180Suche in Google Scholar

[4] Ye H., Gao J., Ding Y., A generalized Gronwall inequality and its application to a fractional differential equation, J. Math. Anal. Appl., 2007, 328 (2), 1075-108110.1016/j.jmaa.2006.05.061Suche in Google Scholar

[5] Benchohra M., Henderson J., Ntouyas S.K., Ouahab A., Existence results for fractional order functional differential equations with infinite delay, J. Math. Anal. Appl., 2008, 338 (2), 1340–135010.1016/j.jmaa.2007.06.021Suche in Google Scholar

[6] Agarwal R.P., Benchohra M., Hamani S., A survey on existence results for boundary value problems of nonlinear fractional differential equations and inclusions, Acta. Appl. Math., 2010, 109 (3), 973–103310.1007/s10440-008-9356-6Suche in Google Scholar

[7] Odibat Z.M., Analytic study on linear systems of fractional differential equations, Comput. Math. Appl., 2010, 59 (3), 1171-118310.1016/j.camwa.2009.06.035Suche in Google Scholar

[8] Ahmad B., Nieto J.J., Existence of solutions for anti-periodic boundary value problems involving fractional differential equations via Leray-Schauder degree theory, Topol. Methods Nonlinear Anal., 2010, 35(2), 295-304Suche in Google Scholar

[9] Bai Z., On positive solutions of a nonlocal fractional boundary value problem, Nonlinear Anal.: TMA, 2010, 72 (2), 916-92410.1016/j.na.2009.07.033Suche in Google Scholar

[10] Mophou G.M., N’Guérékata G.M., Existence of mild solutions of some semilinear neutral fractional functional evolution equations with infinite delay, Appl. Math. Comput., 2010, 216 (1), 61–6910.1016/j.amc.2009.12.062Suche in Google Scholar

[11] Deng W., Smoothness and stability of the solutions for nonlinear fractional differential equations, Nonlinear Anal.: TMA., 2010, 72 (3-4), 1768-177710.1016/j.na.2009.09.018Suche in Google Scholar

[12] Kilbas A.A., Hadamard-type fractional calculus, J. Korean Math. Soc., 2001, 38(6), 1191-1204Suche in Google Scholar

[13] Butzer P.L., Kilbas A.A., Trujillo J.J., Compositions of Hadamard-type fractional integration operators and the semigroup property, J. Math. Anal. Appl., 2002, 269, 387-40010.1016/S0022-247X(02)00049-5Suche in Google Scholar

[14] Butzer P.L., Kilbas A.A., Trujillo J.J., Mellin transform analysis and integration by parts for Hadamard-type fractional integrals, J. Math. Anal. Appl., 2002, 270, 1-1510.1016/S0022-247X(02)00066-5Suche in Google Scholar

[15] Thiramanus P., Ntouyas S.K., Tariboon J., Existence and Uniqueness Results for Hadamard-Type Fractional Differential Equations with Nonlocal Fractional Integral Boundary Conditions, Abstr. Appl. Anal., 2014, 2014, Article ID 902054, 9 pages10.1155/2014/902054Suche in Google Scholar

[16] Klimek M., Sequential fractional differential equations with Hadamard derivative, Commun. Nonlinear Sci. Numer. Simul., 2011, 16, 4689-469710.1016/j.cnsns.2011.01.018Suche in Google Scholar

[17] Ahmad B., Ntouyas S.K., A fully Hadamard type integral boundary value problem of a coupled system of fractional differential equations, Fract. Calc. Appl. Anal., 2014, 17, 348-36010.2478/s13540-014-0173-5Suche in Google Scholar

[18] Jarad F., Abdeljawad T., Baleanu D., Caputo-type modification of the Hadamard fractional derivatives, Adv. Differ. Equ., 2012, 2012, 14210.1186/1687-1847-2012-142Suche in Google Scholar

[19] Gambo Y. Y., Jarad F., Baleanu D., Abdeljawad T., On Caputo modification of the Hadamard fractional derivatives, Adv. Differ. Equ., 2014, 2014, 1010.1186/1687-1847-2014-10Suche in Google Scholar

[20] Ahmad B., Sivasundaram S., Existence results for nonlinear impulsive hybrid boundary value problems involving fractional differential equations, Nonlinear Anal. Hybrid Syst., 2009, 3, 251-25810.1016/j.nahs.2009.01.008Suche in Google Scholar

[21] Ahmad B., Sivasundaram S., Existence of solutions for impulsive integral boundary value problems of fractional order, Nonlinear Anal. Hybrid Syst., 2010, 4, 134-14110.1016/j.nahs.2009.09.002Suche in Google Scholar

[22] Tian Y., Bai Z., Existence results for the three-point impulsive boundary value problem involving fractional differential equations, Comput. Math. Appl., 2010, 59, 2601-260910.1016/j.camwa.2010.01.028Suche in Google Scholar

[23] Cao J., Chen H., Some results on impulsive boundary value problem for fractional differential inclusions, Electron. J. Qual. Theory Differ. Equ., 2011, 11, 1-2410.14232/ejqtde.2011.1.11Suche in Google Scholar

[24] Wang X., Impulsive boundary value problem for nonlinear differential equations of fractional order, Comput. Math. Appl., 2011, 62, 2383-239110.1016/j.camwa.2011.07.026Suche in Google Scholar

[25] Stamova I., Stamov G., Stability analysis of impulsive functional systems of fractional order, Commun Nonlinear Sci Numer Simulat., 2014, 19, 702-70910.1016/j.cnsns.2013.07.005Suche in Google Scholar

[26] Abbas S., Benchohra M., Impulsive partial hyperbolic functional differential equations of fractional order with state-dependent delay, Fract. Calc. Appl. Anal., 2010, 13(3), 225-24410.1504/IJDSDE.2011.042941Suche in Google Scholar

[27] Abbas S., Benchohra M., Upper and lower solutions method for impulsive partial hyperbolic differential equations with fractional order, Nonlinear Anal. Hybrid Syst., 2010, 4(3), 406-41310.1016/j.nahs.2009.10.004Suche in Google Scholar

[28] Abbas S., Agarwal R.P., Benchohra M., Darboux problem for impulsive partial hyperbolic differential equations of fractional order with variable times and infinite delay, Nonlinear Anal. Hybrid Syst., 2010, 4(4), 818-82910.1016/j.nahs.2010.06.001Suche in Google Scholar

[29] Abbas S., Benchohra M., Gorniewicz L., Existence theory for impulsive partial hyperbolic functional differential equations involving the Caputo fractional derivative, Sci. Math. Jpn., 2010, 72(1), 49-60Suche in Google Scholar

[30] Benchohra M., Seba D., Impulsive partial hyperbolic fractional order differential equations in banach spaces, J. Fract. Calc. Appl., 2011, 1 (4), 1-1210.7153/fdc-02-07Suche in Google Scholar

[31] Guo T., Zhang K., Impulsive fractional partial differential equations, Appl. Math. Comput., 2015, 257, 581-59010.1016/j.amc.2014.05.101Suche in Google Scholar

[32] Zhang X., Zhang X., Zhang M., On the concept of general solution for impulsive differential equations of fractional order q ∈ (0,1), Appl. Math. Comput., 2014, 247, 72-8910.1016/j.amc.2014.08.069Suche in Google Scholar

[33] Zhang X., The general solution of differential equations with Caputo-Hadamard fractional derivatives and impulsive effect, Adv. Differ. Equ., 2015, 2015, Article ID 215, 16 pages10.1186/s13662-015-0552-1Suche in Google Scholar

[34] Zhang X., On the concept of general solutions for impulsive differential equations of fractional order q ∈ (1, 2), Appl. Math. Comput., 2015, 268, 103-12010.1016/j.amc.2015.05.123Suche in Google Scholar

[35] Zhang X., Agarwal P., Liu Z., Peng H., The general solution for impulsive differential equations with Riemann-Liouville fractionalorder q ∈ (1,2), Open Math., 2015, 13, 908-92310.1515/math-2015-0073Suche in Google Scholar

[36] Zhang X., Shu T., Cao H., Liu Z., Ding W., The general solution for impulsive differential equations with Hadamard fractional derivative of order q ∈ (1,2), Adv. Differ. Equ., 2016, 2016, Article ID 14, 36 pages10.1186/s13662-016-0744-3Suche in Google Scholar

[37] Zhang X., Zhang X., Liu Z., Peng H., Shu T., Yang S., The General Solution of Impulsive Systems with Caputo-Hadamard Fractional Derivative of Order q ∈ ℂ(ℜ(q) ∈ (1,2)), Math. Prob. Eng., 2016, 2016, Article ID 8101802, 20 pages10.1155/2016/8101802Suche in Google Scholar

[38] Zhang X., Zhang X., Liu Z., Ding W., Cao H., Shu T., On the general solution of impulsive systems with Hadamard fractional derivatives, Math. Prob. Eng., (in press), http://www.hindawi.com/journals/mpe/aip/2814310/10.1155/2016/2814310Suche in Google Scholar

[39] Diethelm K., Ford N.J., Analysis of fractional differential equations, J. Math. Anal. Appl., 2002, 265 (2), 229-24810.1007/978-3-642-14574-2Suche in Google Scholar

Received: 2015-10-23
Accepted: 2016-6-8
Published Online: 2016-7-8
Published in Print: 2016-1-1

© 2016 Zhang et al., published by De Gruyter Open

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Artikel in diesem Heft

  1. Regular Article
  2. A metric graph satisfying w41=1 that cannot be lifted to a curve satisfying dim(W41)=1
  3. Regular Article
  4. On the Riemann-Hilbert problem in multiply connected domains
  5. Regular Article
  6. Hamilton cycles in almost distance-hereditary graphs
  7. Regular Article
  8. Locally adequate semigroup algebras
  9. Regular Article
  10. Parabolic oblique derivative problem with discontinuous coefficients in generalized weighted Morrey spaces
  11. Corrigendum
  12. Corrigendum to: parabolic oblique derivative problem with discontinuous coefficients in generalized weighted Morrey spaces
  13. Regular Article
  14. Some new bounds of the minimum eigenvalue for the Hadamard product of an M-matrix and an inverse M-matrix
  15. Regular Article
  16. Integral inequalities involving generalized Erdélyi-Kober fractional integral operators
  17. Regular Article
  18. Results on the deficiencies of some differential-difference polynomials of meromorphic functions
  19. Regular Article
  20. General numerical radius inequalities for matrices of operators
  21. Regular Article
  22. The best uniform quadratic approximation of circular arcs with high accuracy
  23. Regular Article
  24. Multiple gcd-closed sets and determinants of matrices associated with arithmetic functions
  25. Regular Article
  26. A note on the rate of convergence for Chebyshev-Lobatto and Radau systems
  27. Regular Article
  28. On the weakly(α, ψ, ξ)-contractive condition for multi-valued operators in metric spaces and related fixed point results
  29. Regular Article
  30. Existence of a common solution for a system of nonlinear integral equations via fixed point methods in b-metric spaces
  31. Regular Article
  32. Bounds for the Z-eigenpair of general nonnegative tensors
  33. Regular Article
  34. Subsymmetry and asymmetry models for multiway square contingency tables with ordered categories
  35. Regular Article
  36. End-regular and End-orthodox generalized lexicographic products of bipartite graphs
  37. Regular Article
  38. Refinement of the Jensen integral inequality
  39. Regular Article
  40. New iterative codes for 𝓗-tensors and an application
  41. Regular Article
  42. A result for O2-convergence to be topological in posets
  43. Regular Article
  44. A fixed point approach to the Mittag-Leffler-Hyers-Ulam stability of a fractional integral equation
  45. Regular Article
  46. Uncertainty orders on the sublinear expectation space
  47. Regular Article
  48. Generalized derivations of Lie triple systems
  49. Regular Article
  50. The BV solution of the parabolic equation with degeneracy on the boundary
  51. Regular Article
  52. Malliavin method for optimal investment in financial markets with memory
  53. Regular Article
  54. Parabolic sublinear operators with rough kernel generated by parabolic calderön-zygmund operators and parabolic local campanato space estimates for their commutators on the parabolic generalized local morrey spaces
  55. Regular Article
  56. On annihilators in BL-algebras
  57. Regular Article
  58. On derivations of quantales
  59. Regular Article
  60. On the closed subfields of Q¯~p
  61. Regular Article
  62. A class of tridiagonal operators associated to some subshifts
  63. Regular Article
  64. Some notes to existence and stability of the positive periodic solutions for a delayed nonlinear differential equations
  65. Regular Article
  66. Weighted fractional differential equations with infinite delay in Banach spaces
  67. Regular Article
  68. Laplace-Stieltjes transform of the system mean lifetime via geometric process model
  69. Regular Article
  70. Various limit theorems for ratios from the uniform distribution
  71. Regular Article
  72. On α-almost Artinian modules
  73. Regular Article
  74. Limit theorems for the weights and the degrees in anN-interactions random graph model
  75. Regular Article
  76. An analysis on the stability of a state dependent delay differential equation
  77. Regular Article
  78. The hybrid mean value of Dedekind sums and two-term exponential sums
  79. Regular Article
  80. New modification of Maheshwari’s method with optimal eighth order convergence for solving nonlinear equations
  81. Regular Article
  82. On the concept of general solution for impulsive differential equations of fractional-order q ∈ (2,3)
  83. Regular Article
  84. A Riesz representation theory for completely regular Hausdorff spaces and its applications
  85. Regular Article
  86. Oscillation of impulsive conformable fractional differential equations
  87. Regular Article
  88. Dynamics of doubly stochastic quadratic operators on a finite-dimensional simplex
  89. Regular Article
  90. Homoclinic solutions of 2nth-order difference equations containing both advance and retardation
  91. Regular Article
  92. When do L-fuzzy ideals of a ring generate a distributive lattice?
  93. Regular Article
  94. Fully degenerate poly-Bernoulli numbers and polynomials
  95. Commentary
  96. Commentary to: Generalized derivations of Lie triple systems
  97. Regular Article
  98. Simple sufficient conditions for starlikeness and convexity for meromorphic functions
  99. Regular Article
  100. Global stability analysis and control of leptospirosis
  101. Regular Article
  102. Random attractors for stochastic two-compartment Gray-Scott equations with a multiplicative noise
  103. Regular Article
  104. The fuzzy metric space based on fuzzy measure
  105. Regular Article
  106. A classification of low dimensional multiplicative Hom-Lie superalgebras
  107. Regular Article
  108. Structures of W(2.2) Lie conformal algebra
  109. Regular Article
  110. On the number of spanning trees, the Laplacian eigenvalues, and the Laplacian Estrada index of subdivided-line graphs
  111. Regular Article
  112. Parabolic Marcinkiewicz integrals on product spaces and extrapolation
  113. Regular Article
  114. Prime, weakly prime and almost prime elements in multiplication lattice modules
  115. Regular Article
  116. Pochhammer symbol with negative indices. A new rule for the method of brackets
  117. Regular Article
  118. Outcome space range reduction method for global optimization of sum of affine ratios problem
  119. Regular Article
  120. Factorization theorems for strong maps between matroids of arbitrary cardinality
  121. Regular Article
  122. A convergence analysis of SOR iterative methods for linear systems with weak H-matrices
  123. Regular Article
  124. Existence theory for sequential fractional differential equations with anti-periodic type boundary conditions
  125. Regular Article
  126. Some congruences for 3-component multipartitions
  127. Regular Article
  128. Bound for the largest singular value of nonnegative rectangular tensors
  129. Regular Article
  130. Convolutions of harmonic right half-plane mappings
  131. Regular Article
  132. On homological classification of pomonoids by GP-po-flatness of S-posets
  133. Regular Article
  134. On CSQ-normal subgroups of finite groups
  135. Regular Article
  136. The homogeneous balance of undetermined coefficients method and its application
  137. Regular Article
  138. On the saturated numerical semigroups
  139. Regular Article
  140. The Bruhat rank of a binary symmetric staircase pattern
  141. Regular Article
  142. Fixed point theorems for cyclic contractive mappings via altering distance functions in metric-like spaces
  143. Regular Article
  144. Singularities of lightcone pedals of spacelike curves in Lorentz-Minkowski 3-space
  145. Regular Article
  146. An S-type upper bound for the largest singular value of nonnegative rectangular tensors
  147. Regular Article
  148. Fuzzy ideals of ordered semigroups with fuzzy orderings
  149. Regular Article
  150. On meromorphic functions for sharing two sets and three sets in m-punctured complex plane
  151. Regular Article
  152. An incremental approach to obtaining attribute reduction for dynamic decision systems
  153. Regular Article
  154. Very true operators on MTL-algebras
  155. Regular Article
  156. Value distribution of meromorphic solutions of homogeneous and non-homogeneous complex linear differential-difference equations
  157. Regular Article
  158. A class of 3-dimensional almost Kenmotsu manifolds with harmonic curvature tensors
  159. Regular Article
  160. Robust dynamic output feedback fault-tolerant control for Takagi-Sugeno fuzzy systems with interval time-varying delay via improved delay partitioning approach
  161. Regular Article
  162. New bounds for the minimum eigenvalue of M-matrices
  163. Regular Article
  164. Semi-quotient mappings and spaces
  165. Regular Article
  166. Fractional multilinear integrals with rough kernels on generalized weighted Morrey spaces
  167. Regular Article
  168. A family of singular functions and its relation to harmonic fractal analysis and fuzzy logic
  169. Regular Article
  170. Solution to Fredholm integral inclusions via (F, δb)-contractions
  171. Regular Article
  172. An Ulam stability result on quasi-b-metric-like spaces
  173. Regular Article
  174. On the arrowhead-Fibonacci numbers
  175. Regular Article
  176. Rough semigroups and rough fuzzy semigroups based on fuzzy ideals
  177. Regular Article
  178. The general solution of impulsive systems with Riemann-Liouville fractional derivatives
  179. Regular Article
  180. A remark on local fractional calculus and ordinary derivatives
  181. Regular Article
  182. Elastic Sturmian spirals in the Lorentz-Minkowski plane
  183. Topical Issue: Metaheuristics: Methods and Applications
  184. Bias-variance decomposition in Genetic Programming
  185. Topical Issue: Metaheuristics: Methods and Applications
  186. A novel generalized oppositional biogeography-based optimization algorithm: application to peak to average power ratio reduction in OFDM systems
  187. Special Issue on Recent Developments in Differential Equations
  188. Modeling of vibration for functionally graded beams
  189. Special Issue on Recent Developments in Differential Equations
  190. Decomposition of a second-order linear time-varying differential system as the series connection of two first order commutative pairs
  191. Special Issue on Recent Developments in Differential Equations
  192. Differential equations associated with generalized Bell polynomials and their zeros
  193. Special Issue on Recent Developments in Differential Equations
  194. Differential equations for p, q-Touchard polynomials
  195. Special Issue on Recent Developments in Differential Equations
  196. A new approach to nonlinear singular integral operators depending on three parameters
  197. Special Issue on Recent Developments in Differential Equations
  198. Performance and stochastic stability of the adaptive fading extended Kalman filter with the matrix forgetting factor
  199. Special Issue on Recent Developments in Differential Equations
  200. On new characterization of inextensible flows of space-like curves in de Sitter space
  201. Special Issue on Recent Developments in Differential Equations
  202. Convergence theorems for a family of multivalued nonexpansive mappings in hyperbolic spaces
  203. Special Issue on Recent Developments in Differential Equations
  204. Fractional virus epidemic model on financial networks
  205. Special Issue on Recent Developments in Differential Equations
  206. Reductions and conservation laws for BBM and modified BBM equations
  207. Special Issue on Recent Developments in Differential Equations
  208. Extinction of a two species non-autonomous competitive system with Beddington-DeAngelis functional response and the effect of toxic substances
Heruntergeladen am 19.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/math-2016-0042/html?lang=de
Button zum nach oben scrollen