Home Mathematics A classification of low dimensional multiplicative Hom-Lie superalgebras
Article Open Access

A classification of low dimensional multiplicative Hom-Lie superalgebras

  • Chunyue Wang , Qingcheng Zhang and Zhu Wei EMAIL logo
Published/Copyright: September 20, 2016

Abstract

We study a twisted generalization of Lie superalgebras, called Hom-Lie superalgebras. It is obtained by twisting the graded Jacobi identity by an even linear map. We give a complete classification of the complex multiplicative Hom-Lie superalgebras of low dimensions.

MSC 2010: 17B99; 55U15

1 Introduction

In recent years, Hom-Lie algebras and other Hom-algebras have been extensively studied. They first arised in quasideformation of Lie algebras of vector fields. The Hom-Lie and quasi-Hom-Lie structures are obtained from twisted derivations of discrete modifications of vector fields. For those algebras, the Jacobi condition is twisted [1]. Homalgebras were studied in [210]. Furthermore, Hom-Lie algebras on some q-deformations of Witt and Virasoro algebras were considered in [1113].

Hom-Lie algebras were generalized to Hom-Lie superalgebras by Ammar and Makhlouf [14] and to Hom-Lie color algebras by Yuan [15]. In particular, Cao and Luo [16] proved that there were only the trivial Hom-Lie superalgebras on the finite-dimensional simple Lie superalgebras. The representation theory and the cohomology theory of Hom-Lie superalgebras were studied in [17]. In [18], some infinite-dimensional Hom-Lie superalgebras were constructed, induced by affinizations of the Hom-Balinskii-Novikov superalgebras and Hom-Novikov superalgebras. Furthermore, the central extensions of the infinite-dimensional Hom-Lie superalgebras were studied.

During the past few years, the theories of Hom-Lie superalgebras make great advances. But, only few people study the classification of low dimensional Hom-Lie superalgebras. There are few results about it. Zhang [19] and Li [20] studied the classifications of low dimensional Lie superalgebras and low dimensional multiplicative Hom-Lie algebras, respectively. In this paper, we will discuss the classification of low dimensional multiplicative Hom-Lie superalgebras. For the pure even Hom-Lie superalgebras, they are Hom-Lie algebras. Their classifications have been obtained. It can be found in [20], so we only discuss the odd part, which is nontrivial. We know that derived algebras of non-abelian Hom-Lie superalgebras are non-zero. We note that the properties of the derived algebras can be hold up to isomorphisms. Thus, it is crucial to determine the multiplication tables by using the dimension and properties of derived algebras. Finally, we can obtain the classifications of the low dimensional multiplicative Hom-Lie superalgebras.

The paper is organized as follows: In Section 2, we give some notations and some basic properties of Hom-Lie superalgebras. We give a method to determine whether two different multiplicative Hom-Lie superalgebras are isomorphism or not, and then we obtain a complete classification of multiplicative Hom-Lie superalgebras up to isomorphism. In Section 3 and 4, we get the classifications of the low dimensional multiplicative Hom-Lie superalgebras.

In this paper, we discuss all algebras and vector spaces over a complex field ℂ. The parity of the homogeneous element x is denoted by |x|. hg(L) denotes the set of all homogeneous elements of Hom-Lie superalgebras (L, [, ], σ). L0¯ and L1¯ denote the even part and the odd part of Hom-Lie superalgebras (L, [, ], σ), respectively.

2 Preliminaries

In this section, we recall the notions of Hom-Lie superalgebras. Then we can get some basic properties of Hom-Lie superalgebras. We aim to give a method to determine whether two different multiplicative Hom-Lie superalgebras are isomorphism or not.

Definition 2.1 ([14])

A Hom-Lie superalgebra is a triple (L, [, ], σ) consisting of a super space L, an even bilinear [, ] : L × LLand an even linear mapσ : LL satisfying

[x, y]=(1)|x||y|[y, x], (1)
(1)|x||z|[σ(x), [y, z]]+(1)|z||y|[σ(z), [x, y]]+(1)|y||x|[σ(y), [z, x]]=0.(2)
for all homogeneous elements x, y, z in L.

Let (L, [, ], σ) and (L′, [, ]′, σ′) be two Hom-Lie superalgebras. An even linear map ϕ : LL′ is said to be a homomorphism of Hom-Lie superalgebras if the following conditions are satisfied:

ϕ([x, y])=[ϕ(x), ϕ(y)], (3)
ϕoσ=σoϕ, (4)

for any x, yhg(L). If ϕ is a bijection, then ϕ is called an isomorphism of Hom-Lie superalgebras.

Definition 2.2

A Hom-Lie superalgebra (L, [, ], σ) is called a multiplicative Hom-Lie superalgebra if the even linear map σ satisfiesσ[x, y] = [σ(x, σ(y)] for any x, y ∈ hg(L). A Hom-Lie superalgebra (L, [, ], σ) is called a classical Hom-Lie superalgebra if (L, [, ], σ) is a Lie superalgebra.

Remark 2.3

In the following paper, Hom-Lie superalgebras always denote to be the multiplicative Hom-Lie superalgebras.

Proposition 2.4

Let (L, [, ], σ) be a Hom-Lie superalgebra and σ be an even invertible linear map. Define [, ]1 : L × LL by [x, y]1 = [σ-1(x), σ-1(y)], for any x, y ∈ hg(L). Then (L, [, ]1) is a Lie superalgebra and σ is a Lie superalgebra endomorphism.

Proof

It is clear that [, ]1 is an even bilinear map and is super skew-symmetric. Since

σ1[x, y]=σ1(σ[σ1(x), σ1(y)])=[σ1(x), σ1(y)]=[x, y]1,

we have, for any x, y, z ∈ hg(L),

(1)|x||z|[[x, y]1, z]1+(1)|x||y|[[y, z]1, x]1+(1)|y||z|[[z, x]1, y]1(1)|x||z|[σ1[x, y], z]1+(1)|x||y|[σ1[y, z], x]1+(1)|y||z|[σ1[z, x], y]1+(1)|x||z|σ1[σ1[x, y], z]+(1)|x||y|σ1[σ1[y, z], x]+(1)|y||z|σ1[σ1[z, x], y]=σ2((1)|x||z|[[x, y], σ(z)]+(1)|x||y|[[y, z], σ(x)]+(1)|y||z|[[z, x], σ(y)])= 0.

Obviously, σ is an even endomorphism of the Lie superalgebra (L, [, ]1).

Let L be a linear super space and [, ] : L × LL be an even bilinear map. Mor(L, [, ]) denotes the set of all even linear maps σ such that (L, [, ], σ) is a multiplicative Hom-Lie superalgebra.

Lemma 2.5

Let L be a linear super space, [, ]1and [, ]2be two even bilinear maps on L. If there exists an even invertible linear map ϕ of L satisfying

ϕ[x, y]1=[ϕ(x), ϕ(y)]2,

then

Mor(L, [, ]2)={ϕσϕ1|σMor(L, [, ]1)}.
Proof

Since ϕ is invertible, we have, for any σ1Mor(L, [, ]1), x, y, z ∈ hg(L)

ϕσ1ϕ1[x, y]2=ϕσ1[ϕ1(x), ϕ1(y)]1=[ϕσ1ϕ1(x), ϕσ1ϕ1(y)]2,

and

(1)|x||z|[[x,y]2,ϕσ1ϕ1(z)]2+(1)|x||y|[[y,z]2,ϕσ1ϕ1(x)]2+(1)|y||z|[[z,x]2,ϕσ1ϕ1(y)]2=(1)|x||z|[ϕ[ϕ1(x),ϕ1(y)]1,ϕσ1ϕ1(z)]2+(1)|x||y|[ϕ[ϕ1(y),ϕ1(z)]1,ϕσ1ϕ1(x)]2+(1)|y||z|[ϕ[ϕ1(z),ϕ1(x)]1,ϕσ1ϕ1(y)]2=(1)|x||z|ϕ[[ϕ1(x),ϕ1(y)]1,σ1ϕ1(z)]1+(1)|x||y|ϕ[[ϕ1(y),ϕ1(z)]1,σ1ϕ1(x)]1+(1)|y||z|ϕ[[ϕ1(z),ϕ1(x)]1,σ1ϕ1(y)]1= 0.

So ϕσ1ϕ1Mor(L, [, ]2).

Conversely, for any σ2Mor(L, [, ]2), similar to above, we have ϕ-1σ2ϕMor(L, [, ]1). Set ϕ-1σ2ϕ = σ1. Then σ2 = ϕσ1ϕ-1. Thus, we have Mor(L, [, ]2)={ϕσϕ1|σMor(L, [, ]1)}.

Remark 2.6

By Lemma 2.5, we know that there exists a one-to-one correspondence between the multiplicative Hom-Lie superalgebras (L, [, ]1, σ1) and the multiplicative Hom-Lie superalgebras (L, [, ]2, σ2). In order to simplify the classification of multiplicative Hom-Lie superalgebras, we can simplify [, ]1to [, ]2by an even invertible linear map ϕ. Then we determine the multiplicative Hom-Lie superalgebra structure by means of [, ]2.

Remark 2.7

Let (L, [, ]1, σ1) and (L, [, ]2, σ2) be two Hom-Lie superalgebras with the same underlying vector super space L. (L, [, ]1, σ1) is isomorphic to (L, [, ]2, σ2) if and only if there exists an invertible matrix T such that T[ei, ej]1 = [T(ei), T(ej)]2andA2 = TA1T-1, where A1, A2andTdenote matrices corresponding to σ1, σ2and the homomorphism ϕ : LLwith respect to the basis {e1, e2, ..., en}, respectively.

We denote the derived algebra of Hom-Lie superalgebras (L, [, ], σ) by L′ = [L, L]. It consists of all linear combinations of commutators [x, y] for x, yhg(L). The Hom-Lie superalgebra (L, [, ], σ) is called an abelian Hom-Lie superalgebra if [L, L] = 0.

Lemma 2.8

Let (L1, [, ]1, σ1) and (L2, [, ]2, σ2) be two abelian Hom-Lie superalgebras. If (L1, [, ]1, σ1) is isomorphic to (L2, [, ]2, σ2), thendimL10¯=dimL20¯anddimL11¯=dimL21¯.

Proof

An isomorphism from (L1, [, ]1, σ1) to (L2, [, ]2, σ2) is an isomorphism of their underlying vector super space. So there exists an even invertible linear map ϕ : L10¯L20¯L11¯L21¯.

Lemma 2.9

Let (L, [, ]1, σ1) and (L, [, ]2, σ2) be two abelian Hom-Lie superalgebras with the same underlying vector super space L. (L, [, ]1, σ1) is isomorphic to (L, [, ]2, σ2) if and only if the matrices corresponding to σ1 and σ2 have the same elementary divisors.

Proof

It is straightforward.

Lemma 2.10

Let (L1, [, ]1, σ1) and (L2, [, ]2, σ2) be two Hom-Lie superalgebras. Ifϕ:L1L2is a surjective homomorphism of Hom-Lie superalgebras, thenϕ(L1)=L2.

Proof

For any x, yhg(L1), we have ϕ[x, y]1=[ϕ(x), ϕ(y)]2. So by linearity ϕ(L1)L2. Now L2 is spanned by commutators [y1, y2] with y1, y2hg(L2). Set ϕ(x1) = y1, ϕ(x2) = y2 It follows that ϕ[x1, x2]1 = ϕ[y1, y2]2.

3 A classification of 2-dimensional Hom-Lie superalgebras

In this section, we are going to give the classification of 2-dimensional Hom-Lie superalgebras.

Theorem 3.1

Every 2-dimensional Hom-Lie superalgebra is isomorphic to one of the following nonisomorphic Hom-Lie superalgebra: each algebra is denoted byLi, jk, where i is the dimension ofL0¯, j is is the dimension ofL1¯, k is the number.

(1) L0, 21is an abelian Hom-Lie superalgebra.

(2) L1, 12is an abelian Hom-Lie superalgebra.

(3) L1, 13, b:[e0, e1]=e1, [e1, e1]=0, σ=(100b).L1, 13, bis isomorphic toL1, 13, bif and only if b = b′.

(4) L1, 14, a:[e0, e1]=e1, [e1, e1]=0, σ=(a000)(a0, 1). L1, 14, ais isomorphic toL1, 14, aif and only if a = a′.

(5) L1, 15, b:[e0, e1]=0, [e1, e1]=e0, σ=(b2000)(b0). L1, 15, bis isomorphic toL1, 15, bif and only if b = b′.

In order to prove the above theorem, we give some lemmas.

Let (L, [, ]1, σ) be a 2-dimensional Hom-Lie superalgebra and {e0, e1} be a basis of (L, [, ], σ).

If e0, e1L1¯ and L0¯ = 0, then (L, [, ], σ) is an abelian Hom-Lie superalgebra.

If e0L0¯, e1L1¯ and [L, L]=0, then (L, [, ], σ) is also an abelian Hom-Lie superalgebra.

In the following, we will discuss the situation: e0L0¯, e1L1¯ and [L, L] ≠ 0. Obviously, (L, [, ], σ) is a non-abelian Hom-Lie superalgebra.

Let [e0, e1]=αe1, [e1, e1]=βe0, α2+β20.

If α ≠ 0, β = 0, by Lemma 2.5, then there exists an even invertible linear mapϕ=(α001α) such that the bracket can be simplified as

[e0, e1]=e1, [e1, e1]=0.(5)

Similarly, if α = 0, β ≠ 0, the bracket can be simplified as

[e0, e1]=0, [e1, e1]=e0.(6)

If α ≠ 0, β ≠ 0, the bracket can be simplified as

[e0, e1]=e1, [e1, e1]=e0.(7)

However, there does not exist an even invertible linear map such that formulas (5), (6) and (7) are equivalent.

Lemma 3.2

For the bracket (5), Hom-Lie superalgebras are (L, [, ], σi)(i = 1, 2) up to isomorphism, whereσ1=(100b), σ2(a000)(a0, 1).

Proof

Let σ : LL be an even linear map of Hom-Lie superalgebras and σ(e0) = ae0, σ(e1) = be1. The Hom-Jacobi identity is satisfied for any a, b ∈ ℂ. Since σ is multiplicative, we have a = 1 or b = 0.

Lemma 3.3

For the bracket (6), the Hom-Lie superalgebra is (L, [, ], σ) up to isomorphism, whereσ=(b200b)(b0).

Proof

It is similar to Lemma 3.2.

For the bracket (7), there is not a non-zero even linear map σ such that it is multiplicative and satisfies Hom-Jacobi identity.

Proof of Theorem 3.1

From Lemmas 3.2 and 3.3, we obtain Theorem 3.1.

Remark 3.4

(1) All 2-dimensional Hom-Lie superalgebras are classical Lie superalgebras.

(2) From Lemma 2.8, Hom-Lie superalgebrasL0, 21andL1, 12are not isomorphism.

4 A classification of 3-dimensional Hom-Lie superalgebras

By Lemma 2.10, we note that it can keep the structures of the derived algebras with the isomorphism. Thus, we can use the properties of the derived algebras to determine the structures of 3-dimensional Hom-Lie superalgebras.

Theorem 4.1

Every 3-dimensional Hom-Lie superalgebra is isomorphic to one of the following non-isomorphic Hom-Lie superalgebra: each algebra is denoted byLi, jk, where i is the dimension ofL0¯, j is is the dimension ofL1¯, k is the number.

(1) L0, 31is an abelian Hom-Lie superalgebra.

(2) L2, 12is an abelian Hom-Lie superalgebra.

(3) L2, 13, a, b, c:[e1, e2]=0, [e1, e3]=0, [e2, e3]=0, [e3, e3]=e1, σ=(c2a00b000c)(a2+b2+c20). L2, 13, a, b, cis isomorphic toL2, 13, a, b, cif and only ifb = b′, c = canda = x(c2 - b) + ya′(y ≠ 0).

(4) L2, 14, a, b, c:[e1, e2]=e1, [e1, e3]=0, [e2, e3]=0, [e3, e3]=0, σ=(0a00b000c)(a2+b2+c20). L2, 14, a, b, cis isomorphic toL2, 14, a, b, cif and only ifb = b′, c = c′ and a′ = xa + yb(x ≠ 0).

(5) L2, 15, a, b, c:[e1, e2]=e1, [e1, e3]=0, [e2, e3]=0, [e3, e3]=0, σ=(a1a2001000b)(a10). L2, 15, a1, a2, bis isomorphic toL2, 15, a1, a2, bif and only ifb = b′, a1 = a1anda2x + y = ya1 + a2(x ≠ 0).

(6) L2, 16:[e1, e2]=e1, [e1, e3]=0, [e2, e3]=0, [e3, e3]=e1, σ=(010000000)

(7) L2, 17, a, b, c:[e1, e2]=0[e1, e3]=0,  [e2, e3]=e3, [e3, e3]=0, σ=(ab00c0000) (a2+b2+c20). L2, 17, a, b, cis isomorphic toL2, 17, a, b, cif and only if a = a, c = candb = xb + yc – yc (x ≠ 0).

(8) L2, 18, a, b, c:[e1, e2]=0, [e1, e3]=0,  [e2, e3]=e3, [e3, e3]=0, σ=(ab001000c) (c0). L2, 18, a, b, cisomorphic toL2, 18, a, b, cif and only if a = a, c = candb = xb - ya + yc(x ≠ 0).

(9) L2, 19, a:[e1, e2]=e1, [e1, e3]=0, [e2, e3]=0, [e3, e3]=e2, σ=(0000a2000a)(a0).L2, 19, a is isomorphic to L2, 19, aif and only if a = a.

(10) L2, 110, a:[e1, e2]=e1, [e1, e3]=e3,  [e2, e3]=0, [e3, e3]=0, σ=(00001000a).

(11) L2, 111, a:[e1, e2]=e1, [e1, e3]=e3,  [e2, e3]=0, [e3, e3]=e2, σ=(0000a000a) (a1). L2, 111, ais isomorphic toL2, 111, aif and only if a.

(12) L2, 112, a:[e1, e2]=e1, [e1, e3]=e3,  [e2, e3]=0, [e3, e3]=0, σ=(a0001000a) (a1). L2, 112, ais isomorphic toL2, 112, aif and only if a = a.

(13) L2, 113, a:[e1, e2]=0, [e1, e3]=0,  [e2, e3]=e3, [e3, e3]=e1, σ=(0a0010000). L2, 113, ais isomorphic toL2, 113, aif and only if ax2a + y(x ≠ 0).

(14) L2, 114, a1, a2:[e1, e2]=0, [e1, e3]=0,  [e2, e3]=e3, [e3, e3]=e1, σ=(0a100a20000) (a1). L2, 114, a1, a2is isomorphic toL2, 114, a1, a2if and only ifa2=a2, a1=x2a1+ya2(x0).

(15) L2, 115, a, a:[e1, e2]=0, [e1, e3]=0,  [e2, e3]=e3, [e3, e3]=e1, σ=(a2b0010000) (a1). L2, 115, a, bis isomorphic toL2, 115, a, bif and only ifa=a, b=x2bya2+y(x0).

(16) L2, 116, a:[e1, e2]=αe1, [e1, e3]=0,  [e2, e3]=λe3, [e3, e3]=0, σ=(00001000a) (a0). L2, 116, ais isomorphic toL2, 116, aif and only ifa = a.

(17) L2, 117:[e1, e2]=αe1, [e1, e3]=0,  [e2, e3]=λe3, [e3, e3]=0, σ=(00001000a).

(18) L2, 118, a, b:[e1, e2]=αe1, [e1, e3]=0,  [e2, e3]=λe3, [e3, e3]=0, σ=(0a00b0000) (b1). L2, 118, a, bis isomorphic toL2, 118, a, bif and only ifb=b, a=xa+yb(x0).

(19) L2, 119, a, b:[e1, e2]=αe1, [e1, e3]=0,  [e2, e3]=λe3, [e3, e3]=0, σ=(ab0010000) (a0). L2, 119, a, bis isomorphic toL2, 119, a, bif and only ifa=a, b=xbya+y(x0).

(20) L2, 120, a, b, c:[e1, e2]=αe1, [e1, e3]=0,  [e2, e3]=λe3, [e3, e3]=0, σ5=(ab0010000) (a0, c0). L2, 120, a, b, cis isomorphic toL2, 120, a, b, cif and only ifa=a, c=c, b=xbya+y(x0).

(21) L2, 121, a:[e1, e2]=0, [e1, e3]=e3,  [e2, e3]=0, [e3, e3]=e1, σ=(0000a0000) (a0). L2, 121, ais isomorphic toL2, 121, aif and only if a = a.

(22) L2, 122, a:[e1, e2]=0, [e1, e3]=e3,  [e2, e3]=0, [e3, e3]=e1, σ=(1000a000±1). L2, 122, ais isomorphic toL2, 122, aif and only if a = a.

(23) L2, 123:[e1, e2]=αe1, [e1, e3]=0,  [e2, e3]=λe3, [e3, e3]=μe1, σ=(010000000)

(24) L1, 224:(L, [, ], σ)is an abelian Hom-Lie superalgebra.

(25) L2, 125, a, b:[e2, e2]=e1,  [e2, e3]=0,  [e3, e3]=0, σ=(0000000ab)(a2+b20).L1, 225, a, bis isomorphic toL1, 225, a, bif and only ifb=b, a=xa+yb(x0).

(26) L2, 126, a, b, c:[e2, e2]=e1,  [e2, e3]=0,  [e3, e3]=0, σ=(a2000a00bc)(a0).L1, 226, a, b, cis isomorphic toL1, 226, a, b, cif and only ifa=a, b=xa+ybxc(x0).

(27) L2, 127, a:[e2, e2]=0,  [e2, e3]=e1,  [e3, e3]=0, σ=(00000a000)(a0).L1, 227, ais isomorphic toL1, 227, aif and only ifa=xa(x0).

(28) L2, 128, a:[e2, e2]=0,  [e2, e3]=e1,  [e3, e3]=0, σ=(00000000a)(a0).L1, 228, ais isomorphic toL1, 228, aif and only if a = a.

(29) L2, 129, a, b:[e2, e2]=0,  [e2, e3]=e1,  [e3, e3]=0, σ=(0000000ab)(a0, b0).L1, 229, a, bis isomorphic toL1, 229, a, bif and only ifb=b, a=xa(x0).

(30) L2, 130, a, b:[e2, e2]=0,  [e2, e3]=e1,  [e3, e3]=0, σ=(ab0000b0a0)(a0, b0).L1, 230, a, bis isomorphic toL1, 230, a, bif and only ifa=xa, b=1xb(x0).

(31) L2, 131, a, b:[e2, e2]=0,  [e2, e3]=e1,  [e3, e3]=0, σ=(ab0000b0a0)(a0, b0).L1, 231, a, bis isomorphic toL1, 231, a, bif and only if a = a, b = b.

(32) L1, 232, a:[e1, e2]=e2, [e1, e3]=0, σ=(10000000a).L1, 232, ais isomorphic toL1, 232, aif and only if a′ = a.

(33) L1, 233, a:[e1, e2]=e2, [e1, e3]=0, σ=(00000000a).(a0).L1, 233, ais isomorphic toL1, 233, aif and only if a′ = a.

(34) L1, 234, a, b:[e1, e2]=e2, [e1, e3]=0, σ=(00000a00b).(a0).L1, 234, a, bis isomorphic toL1, 234, a, bif and only if b′ = b, a′ = |a.

(35) L1, 235, a, b:[e1, e2]=e2, [e1, e3]=0, σ=(a0000000b).(a0, 1).L1, 235, a, bis isomorphic toL1, 235, a, bif and only if b′ = b, a′ = |a.

(36) L1, 236, a, b:[e1, e2]=e2, [e1, e3]=0, σ=(1000a000b)(a0).L1, 236, a, bis isomorphic toL1, 236, a, bif and only if b′ = b, a′ = a.

(37) L1, 237, a, b:[e1, e2]=0, [e1, e3]=e2, σ=(00000a00b)(a2+b2|0).L1, 237, a, bis isomorphic toL1, 237, a, bif and only if b′ = b, a′ = xa + yb(x ≠ 0).

(38) L1, 238, a, b, c:[e1, e2]=0, [e1, e3]=e2, σ=(a000acb00c)(a0, c|0).L1, 238, a, b, cis isomorphic toL1, 238, a, b, cif and only if a′ = a, c = c′, b′ = xb + yc - ya′c′(x≠0).

(39) L1, 239, a1, a2, b1, b2:[e1, e2]=αe2, [e1, e3]=μe3, σ=(1000a1b10a2b2).L1, 239, a1, a2, b1, b2is isomorphic toL1, 239, a1, a2, b1, b2if and only ifa1=a1, b2=b2, b1=xb1, a2=|1xa2(x0).

(40) L1, 240, a, b:[e1, e2]=αe2, [e1, e3]=μe3, σ=(1000a000b).L1, 240, a, bis isomorphic toL1, 240, a, bif and only if a = a′, b = b′.

(41) L1, 241, a:[e1, e2]=αe2, [e1, e3]=μe3, σ=(a00000000)(a0, 1).L1, 241, ais isomorphic toL1, 241, aif and only if a = a′.

(42) L1, 242, a:[e1, e2]=αe2, [e1, e3]=μe3, σ=(αμ000000a0)(a0).L1, 242, ais isomorphic toL1, 242, aif and only if a′ = xa(x ≠ 0).

(43) L1, 243, a:[e1, e2]=0, [e1, e3]=βe2, [e2, e2]=0, [e2, e3]=0, [e3, e3]=γe1, σ=(00000a0a0)(a0).L1, 243, ais isomorphic toL1, 243, aif and only if a′ = a.

(44) L1, 244, a, b:[e1, e2]=0, [e1, e3]=βe2, [e2, e2]=0, [e2, e3]=0, [e3, e3]=γe1, σ=(a2000a3b00a)(a0).L1, 244, a, bis isomorphic toL1, 244, a, bif and only if a′ = a, b′ = xb + ya − ya′3(x ≠ 0).

L1, 245, a: [e1, e2] = 0, [e1, e3] = βe2, [e2, e2] = 0, [e2, e3] = μe1, [e3, e3] = γe1, σ = (00000a000) (a 0). L1, 245, ais isomorphic toL1, 245, aif and only ifa = a.

(46) L1, 246, a, b: [e1, e2] = 0, [e1, e3] = βe2, [e2, e2] = 0, [e2, e3] = μe1, [e3, e3] = 0, σ = (00000a00b) (a2 = b2 0). L1, 246, a, bis isomorphic toL1, 246, a, bif and only ifb′ = b, a′ = xa(x ≠ 0).

(47) L1, 247, a: [e1, e2] = 0, [e1, e3] = βe2, [e2, e2] = 0, [e2, e3] = μe1, [e3, e3] = 0, σ = (a000±a000±1) (a 0). L1, 247, ais isomorphic toL1, 247, aif and only ifa = a′.

(48) L1, 248, a: [e1, e2] = αe2, [e1, e3] = 0, [e2, e2] = λe1, [e2, e3] = 0, [e3, e3] = 0, σ = (00000000a) (a 0). L1, 248, ais isomorphic toL1, 248, aif and only ifa = a′.

(49) L1, 249, a: [e1, e2] = αe2, [e1, e3] = 0, [e2, e2] = 0, [e2, e3] = 0, [e3, e3] = γe1, σ = (a20000000a) (a 0). L1, 249, ais isomorphic toL1, 249, aif and only ifa = a′.

(50) L1, 250, a: [e1, e2] = αe2, [e1, e3] = βe2, [e2, e2] = 0, [e2, e3] = 0, [e3, e3] = γe1, σ = (a20000βαa00a) (a 0). L1, 250, ais isomorphic toL1, 250, aif and only ifa = a′.

In order to prove the above theorem, we give some lemmas.

Let (L, [, ], σ) be a 3-dimensional Hom-Lie superalgebra and {e1e2e3} be a basis of (L, [, ], σ).

If e1, e2, e3L1¯ and L0¯ = 0, then (L, [, ], σ) is an abelian Hom-Lie superalgebra.

Now we consider the 3-dimensional Hom-Lie superalgebra (L, [, ], σ), where dim L0¯ = 2 and dim L1¯ = 1. Set e1, e2L0¯, e3L1¯.

(1) If [L, L] = 0, then (L, [, ], σ) is an abelian Hom-Lie superalgebra.

(2) If dim [L, L] = 1, we consider two cases as follows.

Case I: [L, L] = e1. Let [e1, e2] = αe1, [e1, e3] = 0, [e2, e3] = 0, [e3, e3] = βe1, where α2 + β2 ≠ 0.

If α = 0, β ≠ 0, by Lemma 2.5, there exists an even invertible linear map ϕ = (1β10010001) such that the bracket can be simplified as

[e1, e2]=0, [e1, e3]=0, [e2, e3]=0, [e3, e3]=e1.(8)

Similarly, if α ≠ 0, β = 0, the bracket can be simplified as

[e1, e2]=e1, [e1, e3]=0, [e2, e3]=0, [e3, e3]=0.(9)

If α ≠ 0, β = 0, the bracket can be simplified as

[e1, e2]=e1, [e1, e3]=0, [e2, e3]=0, [e3, e3]=e1.(10)

However, there is not an even invertible linear map such that formulas (8), (9) and (10) are equivalent.

Lemma 4.2

For the bracket (8), the Hom-Lie superalgebra is (L, [, ], σ) up to isomorphism, where σ = (c2a00b000c) (a2 + b2c2 0).

Proof

Let σ : LL be an even linear map of the Hom-Lie superalgebras and σ(e1) = a1e1 + a2e2, σ(e2) = b1e1 + b2e2, σ(e3) = ce3. For any a1, a2, b1, b2, c Hom-Jacobi identity is satisfied. Since σ is multiplicative, we have a1 = c2 and a2 = 0. Set b1 = a, b2 = b.

Lemma 4.3

For the bracket (9), the Hom-Lie superalgebra is (L, [, ], σi)(i = 1, 2) up to isomorphism, where σ1 = (0a00b000c) (a2 + b2c2 0),  σ2 = (a1a2001000b) (a1 0).

Proof

It is similar to Lemma 4.2.

Lemma 4.4

For the bracket (10), the Hom-Lie superalgebra is (L, [, ], σi up to isomorphism, where σ = (010000000).

Proof

Let σ : LL be an even linear map of the Hom-Lie superalgebras and σ(e1) = a1e1 + a2e2, σ(e2) = b1e1 + b2e2, σ(e3) = ce3. Since σ is multiplicative, we have a1 = c2 = a1b2 - a2b1 and a2 = 0. By Hom-Jacobi identity, we obtain b2 = 0, then c = 0. Set σ = (0b10000000) (b1 0). There exists an even invertible linear map ϕ = (1b11001000±1b1) satisfying

[ϕ(e1), ϕ(e2)]=ϕ(e1), [ϕ(e1), ϕ(e3)]=0, [ϕ(e2), ϕ(e3)]=0, [ϕ(e3), ϕ(e3)]=ϕ(e1)

such that ϕσϕ1 = σ = (010000000).

Case II: [L, L] = e3 Let [e1, e2] = 0, [e1, e3] = αe3, [e2, e3] = βe3, [e3, e3] = 0, where α2 + β2 ≠ 0.

If α = 0, β ≠ 0, by Lemma 2.5, there exists an even invertible linear map ϕ = (1100β0001) such that the bracket can be simplified as

[e1, e2]=0, [e1, e3]=0, [e2, e3]=e3, [e3, e3]=0.(11)
Lemma 4.5

For the bracket (11), the Hom-Lie superalgebras are (L, [, ], σi)(i = 1, 2) up to isomorphism, where σ1 = (ab00c0000) (a2 + b2c2 0),  σ2 = (ab001000c) (c 0).

Proof

It is similar to Lemma 4.4.

If α ≠ 0, β = 0 or α ≠ 0, β ≠, 0 by Lemma 2.5, we know that Hom-Lie superalgebras are isomorphic to those Hom-Lie superalgebras in Lemma 4.5.

Remark 4.6

All Hom-Lie superalgebras in Theorem 4.2-4.5 are classical Lie superalgebras.

(3) If dim [L, L] = 2, we will consider two cases as follows.

Case I: [L, L]=e1+e2=L0¯. Let [e1, e2] = α1e1+α2e2, [e1, e3] = 0, [e2, e3] = 0, [e3, e3] = β1e1+α2e2.

The matrix A=(α1β1α2β2) is non-degenerate, otherwise, it is contradictory to dim [L, L] = 2.

If β1 = α2 = 0, we have α1 ≠ 0, β2 ≠ 0. By Lemma 2.5, there exists an even invertible linear map ϕ=(1000α1000±α1β2) such that the bracket can be simplified as

[e1, e2]=e1, [e1, e3]=0, [e2, e3]=0, [e3, e3]=e2.(12)

Other cases can be simplified as (12) by Lemma 2.5.

Lemma 4.7

For the bracket (12), the Hom-Lie superalgebra is (L, [, ], σ) up to isomorphism, where σ = (1000a2000a)(a0).

Proof

It is similar to Lemma 4.4.

Case II: [L, L] = ℂe1 + ℂe3. Let [e1, e2] = αe1, [e1, e3] = βe3, [e2, e3] = λe3, [e3, e3] = μe1. We will consider situations as follows.

If α ≠ 0, β ≠ 0, λ = 0, μ = 0, by Lemma 2.5, there exists an even invertible linear map ϕ=(β000α0001) such that the bracket can be simplified as

[e1, e2]=e1, [e1, e3]=e3, [e2, e3]=0, [e3, e3]=0.(13)

Moreover, for α ≠ 0, β ≠ 0, λ ≠ 0, μ = 0, the bracket can be simplified as (13).

Lemma 4.8

For the bracket (13), Hom-Lie superalgebras are (L, [, ], σi) (1 ≥ i ≥ 3) up to isomorphism, whereσ1=(000010000), σ2=(0000a0000)(a1), σ3=(a00010000)(a1).

Proof

It is similar to Lemma 4.4.

If α = 0, β = 0, λ ≠ 0, μ ≠ 0, then the bracket can be simplified as

[e1, e2]=0, [e1, e3]=0, [e2, e3]=e3, [e3, e3]=e1.(14)
Lemma 4.9

For the bracket (14), Hom-Lie superalgebras are (L, [, ], σi) (1 ≥ i ≥ 3) up to isomorphism, whereσ1=(0a0010000), σ2=(0a100a20000)(a21), σ3=(a2b001000a)(a0).

Proof

It is similar to Lemma 4.4.

If α ≠ 0, β = 0, λ ≠ 0, μ = 0, then

[e1, e2]=αe1, [e1, e3]=0, [e2, e3]=λe3, [e3, e3]=0.(15)

.

Lemma 4.10

For the bracket (15), Hom-Lie superalgebras are (L, [, ], σi) (1 ≥ i ≥ 5) up to isomorphism, whereσ1=(000010000)(a0), σ2=(000010000), σ3=(0a00b0000)(b1), σ4=(ab0010000)(a0), σ5=(ab001000c)(a0, c0).

Proof

It is similar to Lemma 4.4.

If α = 0, β ≠ 0, λ = 0, μ ≠ 0, then the bracket can be simplified as

[e1, e2]=0, [e1, e3]=e3, [e2, e3]=0, [e3, e3]=e1.(16)

Moreover, for α = 0, β ≠ 0, λ ≠ 0, μ ≠ 0, the bracket can be simplified as (16).

Lemma 4.11

For the bracket (16), Hom-Lie superalgebras are (L, [, ], σi) (1 ≥ i ≥ 2) up to isomorphism, whereσ1=(0000a0000)(a0), σ2=(1000a000±1).

Proof

It is similar to Lemma 4.4.

If α ≠ 0, β ≠ 0, λ = 0, μ ≠ 0, then the bracket can be simplified as

[e1, e2]=e1, [e1, e3]=e3, [e2, e3]=0, [e3, e3]=e1.(17)

Moreover, for α ≠ 0, β ≠ 0, λ ≠ 0, μ ≠ 0, the bracket can be simplified as (17). However, for formula (17), there are not non-zero even linear maps σ satisfying σ[ei, ej] = [σ(ei), σ(ej)] such that (L, [, ], σ) is a Hom-Lie superalgebra.

If α ≠ 0, β = 0, λ ≠ 0, μ ≠ 0, then

[e1, e2]=αe1, [e1, e3]=0, [e2, e3]=λe3, [e3, e3]=μe1.(18)
Lemma 4.12

For the bracket (17), the Hom-Lie superalgebra is (L, [, ], σ) up to isomorphism, where σ = (010000000)

Proof

It is similar to Lemma 4.4.

(4) If dim [L, L] = 3, then [L, L] = L. Let [e1, e2] = α1e1 + α2e2, [e1, e3] = μe3, [e3, e3] = β1e1 + β2e2. From dim [L, L] = 3, it follows that λ2 + μ2 ≠ 0 and the matrix A=(α1β1α2β2) is non-degenerate. So we only consider three cases as follows, the other cases are equivalent to those.

If μ ≠ 0, α1 ≠ 0, β2 ≠ 0, λ = β1 = α2 = 0, then [e1, e2] = α1e1, [e1, e3] = 0, [e2, e3] = μe3, [e3, e3] = β2e2.

If λ ≠ 0, α1 ≠ 0, β2 ≠ 0, μ = β1 = α2 = 0, then [e1, e2] = α1e1, [e1, e3] = λe3, [e2, e3] = 0, [e3, e3] = β2e2.

If λ ≠ 0, α1 ≠ 0, β2 ≠ 0, μ ≠ 0, β1 = α2 = 0, then [e1, e2] = α1e1, [e1, e3] = λe3, [e2, e3] = μe3, [e3, e3] = β2e2.

For the above formulas, there are not non-zero even linear maps σ satisfying σ[ei, ej] = [σ(ei), σ(ej)] such that (L, [, ], σ) is a Hom-Lie superalgebra.

In the following paragraph, we will consider the 3-dimensional Hom-Lie superalgebra (L, [, ], σ), where dim L0¯=1, dim L1¯=2. Set e1L0¯, e2, e3L1¯.

(1) If dim [L, L] = 0, then (L, [, ], σ) is an abelian Hom-Lie superalgebra.

(2) If dim [L, L] = 1, we consider the two cases as follows.

Case I: [L, L] = ℂe1 = L0¯. Let [e1, e2] = 0, [e1, e3] = 0, [e2, e2] = αe1, [e2, e3] = βe1, [e3, e3] = γe1, where α2 + β2 + γ2 ≠ 0.

Similar to above, we have

[e2, e2]=e1, [e2, e3]=0, [e3, e3]=0.(19)
[e2, e2]=0, [e2, e3]=e1, [e3, e3]=0.(20)
Lemma 4.13

For the bracket (19), Hom-Lie superalgebras are (L, [, ], σi) (1 ≥ i ≥ 2) up to isomorphism, whereσ1=(0000000ab)(a2+b20), σ2=(a2000a00bc)(a0).

Proof

It is similar to Lemma 4.4.

Lemma 4.14

For the bracket (20), Hom-Lie superalgebras are (L, [, ], σi)(1 ≥ i ≥ 5) up to isomorphism, whereσ1=(00000a000)(a0), σ2=(00000000a)(a0), σ3=(0000000ab)(a0,  b0), σ4=(ab0000b0a0)(a0,  b0), σ5=(ab000a000b)(a0,  b0).

Proof

It is similar to Lemma 4.4.

Case II: [L, L] = ℂe2L1¯. Let [e1, e2] = αe2, [e1, e3] = βe2, where α2 + β2 ≠ 0.

Similar to above, we have

[e1, e2]=e2, [e1, e3]=0.(21)
[e1, e2]=0, [e1, e3]=e2(22)

.

Lemma 4.15

For the bracket (21), Hom-Lie superalgebras are (L, [, ], σi)(1 ≥ i ≥ 5) up to isomorphism, whereσ1=(10000000a), σ2=(00000000a)(a0), σ3=(00000a00b)(a0), σ4=(a0000000b)(a0,  1), σ5=(1000a000b)(a0).

Proof

It is similar to Lemma 4.4.

Lemma 4.16

For the bracket (22), Hom-Lie superalgebras are (L, [, ], σi)(1 ≥ i ≥ 2) up to isomorphism, whereσ1=(00000a00b)(a2+b20), σ3=(a000acb00c)(a0, c0).

Proof

It is similar to Lemma 4.4.

Remark 4.17

Hom-Lie superalgebras in Lemma 4.15 and Lemma 4.16 are classical Lie superalgebras.

(3) If dim [L, L] = 2, we consider the two cases as follows.

Case I: L, L=Ce2+Ce3=L1¯Lete1, e2=αe2+βe3, e1, e3=λe2+μe3 , where the matrix A=αλβμ is non-degenerate. Then we only consider α ≠ 0, μ ≠ 0, β = λ = 0, other cases are equivalent to this one. By the direct calculation, we can get

e1, e2=αe2, e1, e3=μe3(23)
Lemma 4.18

For the bracket (23), Hom-Lie superalgebras are (L, [, ], σi) (1 ≤ i ≤ 4) up to isomorphism, whereσ1=1000a1b10a2b2, σ2=1000a000b, σ3=a00000000a0, 1, σ4=αμ000000a0a0.

Proof

It is similar to Lemma 4.4.

Case II: L, L=Ce1+Ce2Lete1, e2=αe2, e1, e3=βe2, e2, e2=λe1, e2, e3=μe1, e3, e3=γe1,

where α2 + β2 ≠ 0, λ2 + μ2 + γ2 ≠ 0.

Similar to above, we have

e1, e2=0, e1, e3=βe2, e2, e2=0, e2, e3=0, e3, e3=γe1.(24)
e1, e2=0, e1, e3=βe2, e2, e2=0, e2, e3=μe1, e3, e3=γe1.(25)
e1, e2=0, e1, e3=βe2, e2, e2=0, e2, e3=μe1, e3, e3=0.(26)
e1, e2=αe2, e1, e3=0, e2, e2=λe1, e2, e3=0, e3, e3=0.(27)
e1, e2=αe2, e1, e3=0, e2, e2=0, e2, e3=0, e3, e3=γe1.(28)
e1, e2=αe2, e1, e3=βe2, e2, e2=0, e2, e3=0, e3, e3=γe1.(29)
Lemma 4.19

For the bracket (24), Hom-Lie superalgebras are (L, [, ], σi)(1 ≤ i ≤ 2) up to isomorphism, whereσ1=00000a000a0, σ2=a2000a3b00aa0.

Proof

It is similar to Lemma 4.4.

Lemma 4.20

For the bracket (25), the Hom-Lie superalgebra is (L, [, ]σ) up to isomorphism, where σ = σ=00000a000a0.

Proof

It is similar to Lemma 4.4.

Lemma 4.21

For the bracket (26), Hom-Lie superalgebras are (L, [, ], σi)(1 ≤ i ≤ 2) up to isomorphism, whereσ1=00000a00ba2+b20, σ2=a000±a000±1a0.

Proof

It is similar to Lemma 4.4.

Lemma 4.22

For the bracket (27), the Hom-Lie superalgebra is (L, [, ], σ) up to isomorphism, where σ = σ=00000000aa0.

Proof

It is similar to Lemma 4.4.

Lemma 4.23

For the bracket (28), the Hom-Lie superalgebra is (L, [, ], σ) up to isomorphism, where σ = σ=a20000000aa0.

Proof

It is similar to Lemma 4.4.

Lemma 4.24

For the bracket (29), Hom-Lie superalgebras are (L, [, ], σ) up to isomorphism,, whereσ=a20000βαa00aa0.

Proof

It is similar to Lemma 4.4.

(4) If dim [L, L] = 3, then [L, L] = L. Let [e1, e2] = α1e2 + β1e3, [e1, e3] = α2e2 + β2e3, [e2, e2] = λe1, [e2, e3] = μe1, [e3, e3] = γe1. From dim[L, L] = 3, it follows that λ2 + μ2 + γ2 ≠ 0 and the matrix A=α1α2β1β2 is non-degenerate. So we only consider three cases as follows, other cases are equivalent to those.

e1, e2=α1e2, e1, e3=β2e3, e2, e2=e1, e2, e3=0, e3, e3=0.
e1, e2=α1e2, e1, e3=β2e3, e2, e2=e1, e2, e3=0, e3, e3=e1.
e1, e2=α1e2, e1, e3=β2e3, e2, e2=0, e2, e3=e1, e3, e3=0.

For the above formulas, there are not non-zero even linear maps σ satisfying σ [ei, ej] = [σ(ei), σ(ej)] such that (L, [, ], σ) is a Hom-Lie superalgebra.

Proof of Theorem 4.1

From Lemmas 4.2-4.24, we obtain Theorem 4.1.

Remark 4.25

By Lemma 2.8, Hom-Lie superalgebrasL0;31 , L2, 12andL1, 224are not isomorphism.

Acknowledgement

This work was supported by National Natural Science Foundation of China(11471090) and Science and Technology Research Fund of Jilin Province (2016111).

References

[1] Hartwing J., Larsson D., Silvestrov S. D., Deformations of Lie algebras using σ -derivations, J. Algebra, 2006, 295(2), 314-36110.1016/j.jalgebra.2005.07.036Search in Google Scholar

[2] Makhlouf A., Silvestrov S. D., Hom-algebra structures, J. Gen. Lie Theory Appl., 2008, 2(2), 51-6410.4303/jglta/S070206Search in Google Scholar

[3] Makhlouf A., Silvestrov S. D., Notes on formal deformations of Hom-associative and Hom-Lie algebras, Forum Math, 2010, 22(4), 715-73910.1515/forum.2010.040Search in Google Scholar

[4] Makhlouf A., Silvestrov S. D., Hom-algebras and Hom-coalgebras, J. Algebra Appl., 2010, 9(4), 553-58910.1142/S0219498810004117Search in Google Scholar

[5] Yau D., Enveloping algebra of Hom-Lie algebras, J. Gen. Lie Theory Appl., 2008, 2(2), 95-10810.4303/jglta/S070209Search in Google Scholar

[6] Yau D., Hom-algebras and homology, J. Lie Theory, 2009, 19(2), 409-421Search in Google Scholar

[7] Yau D., Hom-bialgebras and comodule Hom-algebras, Int. Electron. J. Algebra, 2010, 8, 45-64Search in Google Scholar

[8] Yau D., Hom-Yang-Baxter equation, Hom-Lie algebras and quasi-triangular bialgebras, J. Phys. A, 2009, 42(16), 165-20210.1088/1751-8113/42/16/165202Search in Google Scholar

[9] Yau D., The Hom-Yang-Baxter equation and Hom-Lie algebras, J. Math. Phys., 2011, 52(5), 053502, 19pp10.1063/1.3571970Search in Google Scholar

[10] Yau D., The classical Hom-Yang-Baxter equation and Hom-Lie bialgebras, Int. Electron. J. Algebra, 2015, 17, 11-4510.24330/ieja.266210Search in Google Scholar

[11] Aizawa N., Sato H., q-deformation of the Virasoro algebra with central extension, Phys. Lett. B, 1991, 256(1), 185-19010.1016/0370-2693(91)90671-CSearch in Google Scholar

[12] Chaichian M., Isaev A. P, Lukierski J., Popowicz Z., Presajder P, q-deformations of Virasoro algebra and conformal dimensions, Phys. Lett. B, 1991, 262(1), 32-3810.1016/0370-2693(91)90638-7Search in Google Scholar

[13] Chaichian M., Popowicz Z., Presajder P., q-Virasoro algebra and its relation to the q-deformed KdV system, Phys. Lett. B, 1990, 249(1), 63-6510.1016/0370-2693(90)90527-DSearch in Google Scholar

[14] Ammar F., Makhlouf A., Hom-Lie superalgebras and Hom-Lie admissible superalgebras, J. Algebra, 2010, 324(7), 1513-152810.1016/j.jalgebra.2010.06.014Search in Google Scholar

[15] Yuan L., Hom-Lie color algebra structures, Comm. Algebra, 2012, 40, 575-59210.1080/00927872.2010.533726Search in Google Scholar

[16] Cao B., Luo L., Hom-Lie superalgebra structures on finite-dimensional simple Lie superalgebras, J. Lie Theory, 2013, 23(4), 11151128Search in Google Scholar

[17] Ammar F., Makhlouf A., Saadoui N., Cohomology of Hom-Lie superalgebras and q-deformed Witt superalgebra, Czechoslovak Math. J., 2013, 63(138), 721-76110.1007/s10587-013-0049-6Search in Google Scholar

[18] Zhang R., Hou D., Bai C., A Hom-version of the affinizations of Balinskii-Novikov and Novikov superalgebras, J. Math. Phys., 2011, 52(2), 1-1910.1063/1.3546025Search in Google Scholar

[19] Zhang R., Zhang Y., The determination of Lie superalgebras with low dimensions (Chinese), Journal of Northeast Normal University, 2008, 40(1), 1-5Search in Google Scholar

[20] Li X., Li Y., Classification of 3-dimensional multiplicative Hom-Lie algebras, Journal of Xinyang Normal University, 2012, 25(4), 427-430Search in Google Scholar

Received: 2015-5-3
Accepted: 2016-8-1
Published Online: 2016-9-20
Published in Print: 2016-1-1

© 2016 Wang et al., published by De Gruyter Open

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Articles in the same Issue

  1. Regular Article
  2. A metric graph satisfying w41=1 that cannot be lifted to a curve satisfying dim(W41)=1
  3. Regular Article
  4. On the Riemann-Hilbert problem in multiply connected domains
  5. Regular Article
  6. Hamilton cycles in almost distance-hereditary graphs
  7. Regular Article
  8. Locally adequate semigroup algebras
  9. Regular Article
  10. Parabolic oblique derivative problem with discontinuous coefficients in generalized weighted Morrey spaces
  11. Corrigendum
  12. Corrigendum to: parabolic oblique derivative problem with discontinuous coefficients in generalized weighted Morrey spaces
  13. Regular Article
  14. Some new bounds of the minimum eigenvalue for the Hadamard product of an M-matrix and an inverse M-matrix
  15. Regular Article
  16. Integral inequalities involving generalized Erdélyi-Kober fractional integral operators
  17. Regular Article
  18. Results on the deficiencies of some differential-difference polynomials of meromorphic functions
  19. Regular Article
  20. General numerical radius inequalities for matrices of operators
  21. Regular Article
  22. The best uniform quadratic approximation of circular arcs with high accuracy
  23. Regular Article
  24. Multiple gcd-closed sets and determinants of matrices associated with arithmetic functions
  25. Regular Article
  26. A note on the rate of convergence for Chebyshev-Lobatto and Radau systems
  27. Regular Article
  28. On the weakly(α, ψ, ξ)-contractive condition for multi-valued operators in metric spaces and related fixed point results
  29. Regular Article
  30. Existence of a common solution for a system of nonlinear integral equations via fixed point methods in b-metric spaces
  31. Regular Article
  32. Bounds for the Z-eigenpair of general nonnegative tensors
  33. Regular Article
  34. Subsymmetry and asymmetry models for multiway square contingency tables with ordered categories
  35. Regular Article
  36. End-regular and End-orthodox generalized lexicographic products of bipartite graphs
  37. Regular Article
  38. Refinement of the Jensen integral inequality
  39. Regular Article
  40. New iterative codes for 𝓗-tensors and an application
  41. Regular Article
  42. A result for O2-convergence to be topological in posets
  43. Regular Article
  44. A fixed point approach to the Mittag-Leffler-Hyers-Ulam stability of a fractional integral equation
  45. Regular Article
  46. Uncertainty orders on the sublinear expectation space
  47. Regular Article
  48. Generalized derivations of Lie triple systems
  49. Regular Article
  50. The BV solution of the parabolic equation with degeneracy on the boundary
  51. Regular Article
  52. Malliavin method for optimal investment in financial markets with memory
  53. Regular Article
  54. Parabolic sublinear operators with rough kernel generated by parabolic calderön-zygmund operators and parabolic local campanato space estimates for their commutators on the parabolic generalized local morrey spaces
  55. Regular Article
  56. On annihilators in BL-algebras
  57. Regular Article
  58. On derivations of quantales
  59. Regular Article
  60. On the closed subfields of Q¯~p
  61. Regular Article
  62. A class of tridiagonal operators associated to some subshifts
  63. Regular Article
  64. Some notes to existence and stability of the positive periodic solutions for a delayed nonlinear differential equations
  65. Regular Article
  66. Weighted fractional differential equations with infinite delay in Banach spaces
  67. Regular Article
  68. Laplace-Stieltjes transform of the system mean lifetime via geometric process model
  69. Regular Article
  70. Various limit theorems for ratios from the uniform distribution
  71. Regular Article
  72. On α-almost Artinian modules
  73. Regular Article
  74. Limit theorems for the weights and the degrees in anN-interactions random graph model
  75. Regular Article
  76. An analysis on the stability of a state dependent delay differential equation
  77. Regular Article
  78. The hybrid mean value of Dedekind sums and two-term exponential sums
  79. Regular Article
  80. New modification of Maheshwari’s method with optimal eighth order convergence for solving nonlinear equations
  81. Regular Article
  82. On the concept of general solution for impulsive differential equations of fractional-order q ∈ (2,3)
  83. Regular Article
  84. A Riesz representation theory for completely regular Hausdorff spaces and its applications
  85. Regular Article
  86. Oscillation of impulsive conformable fractional differential equations
  87. Regular Article
  88. Dynamics of doubly stochastic quadratic operators on a finite-dimensional simplex
  89. Regular Article
  90. Homoclinic solutions of 2nth-order difference equations containing both advance and retardation
  91. Regular Article
  92. When do L-fuzzy ideals of a ring generate a distributive lattice?
  93. Regular Article
  94. Fully degenerate poly-Bernoulli numbers and polynomials
  95. Commentary
  96. Commentary to: Generalized derivations of Lie triple systems
  97. Regular Article
  98. Simple sufficient conditions for starlikeness and convexity for meromorphic functions
  99. Regular Article
  100. Global stability analysis and control of leptospirosis
  101. Regular Article
  102. Random attractors for stochastic two-compartment Gray-Scott equations with a multiplicative noise
  103. Regular Article
  104. The fuzzy metric space based on fuzzy measure
  105. Regular Article
  106. A classification of low dimensional multiplicative Hom-Lie superalgebras
  107. Regular Article
  108. Structures of W(2.2) Lie conformal algebra
  109. Regular Article
  110. On the number of spanning trees, the Laplacian eigenvalues, and the Laplacian Estrada index of subdivided-line graphs
  111. Regular Article
  112. Parabolic Marcinkiewicz integrals on product spaces and extrapolation
  113. Regular Article
  114. Prime, weakly prime and almost prime elements in multiplication lattice modules
  115. Regular Article
  116. Pochhammer symbol with negative indices. A new rule for the method of brackets
  117. Regular Article
  118. Outcome space range reduction method for global optimization of sum of affine ratios problem
  119. Regular Article
  120. Factorization theorems for strong maps between matroids of arbitrary cardinality
  121. Regular Article
  122. A convergence analysis of SOR iterative methods for linear systems with weak H-matrices
  123. Regular Article
  124. Existence theory for sequential fractional differential equations with anti-periodic type boundary conditions
  125. Regular Article
  126. Some congruences for 3-component multipartitions
  127. Regular Article
  128. Bound for the largest singular value of nonnegative rectangular tensors
  129. Regular Article
  130. Convolutions of harmonic right half-plane mappings
  131. Regular Article
  132. On homological classification of pomonoids by GP-po-flatness of S-posets
  133. Regular Article
  134. On CSQ-normal subgroups of finite groups
  135. Regular Article
  136. The homogeneous balance of undetermined coefficients method and its application
  137. Regular Article
  138. On the saturated numerical semigroups
  139. Regular Article
  140. The Bruhat rank of a binary symmetric staircase pattern
  141. Regular Article
  142. Fixed point theorems for cyclic contractive mappings via altering distance functions in metric-like spaces
  143. Regular Article
  144. Singularities of lightcone pedals of spacelike curves in Lorentz-Minkowski 3-space
  145. Regular Article
  146. An S-type upper bound for the largest singular value of nonnegative rectangular tensors
  147. Regular Article
  148. Fuzzy ideals of ordered semigroups with fuzzy orderings
  149. Regular Article
  150. On meromorphic functions for sharing two sets and three sets in m-punctured complex plane
  151. Regular Article
  152. An incremental approach to obtaining attribute reduction for dynamic decision systems
  153. Regular Article
  154. Very true operators on MTL-algebras
  155. Regular Article
  156. Value distribution of meromorphic solutions of homogeneous and non-homogeneous complex linear differential-difference equations
  157. Regular Article
  158. A class of 3-dimensional almost Kenmotsu manifolds with harmonic curvature tensors
  159. Regular Article
  160. Robust dynamic output feedback fault-tolerant control for Takagi-Sugeno fuzzy systems with interval time-varying delay via improved delay partitioning approach
  161. Regular Article
  162. New bounds for the minimum eigenvalue of M-matrices
  163. Regular Article
  164. Semi-quotient mappings and spaces
  165. Regular Article
  166. Fractional multilinear integrals with rough kernels on generalized weighted Morrey spaces
  167. Regular Article
  168. A family of singular functions and its relation to harmonic fractal analysis and fuzzy logic
  169. Regular Article
  170. Solution to Fredholm integral inclusions via (F, δb)-contractions
  171. Regular Article
  172. An Ulam stability result on quasi-b-metric-like spaces
  173. Regular Article
  174. On the arrowhead-Fibonacci numbers
  175. Regular Article
  176. Rough semigroups and rough fuzzy semigroups based on fuzzy ideals
  177. Regular Article
  178. The general solution of impulsive systems with Riemann-Liouville fractional derivatives
  179. Regular Article
  180. A remark on local fractional calculus and ordinary derivatives
  181. Regular Article
  182. Elastic Sturmian spirals in the Lorentz-Minkowski plane
  183. Topical Issue: Metaheuristics: Methods and Applications
  184. Bias-variance decomposition in Genetic Programming
  185. Topical Issue: Metaheuristics: Methods and Applications
  186. A novel generalized oppositional biogeography-based optimization algorithm: application to peak to average power ratio reduction in OFDM systems
  187. Special Issue on Recent Developments in Differential Equations
  188. Modeling of vibration for functionally graded beams
  189. Special Issue on Recent Developments in Differential Equations
  190. Decomposition of a second-order linear time-varying differential system as the series connection of two first order commutative pairs
  191. Special Issue on Recent Developments in Differential Equations
  192. Differential equations associated with generalized Bell polynomials and their zeros
  193. Special Issue on Recent Developments in Differential Equations
  194. Differential equations for p, q-Touchard polynomials
  195. Special Issue on Recent Developments in Differential Equations
  196. A new approach to nonlinear singular integral operators depending on three parameters
  197. Special Issue on Recent Developments in Differential Equations
  198. Performance and stochastic stability of the adaptive fading extended Kalman filter with the matrix forgetting factor
  199. Special Issue on Recent Developments in Differential Equations
  200. On new characterization of inextensible flows of space-like curves in de Sitter space
  201. Special Issue on Recent Developments in Differential Equations
  202. Convergence theorems for a family of multivalued nonexpansive mappings in hyperbolic spaces
  203. Special Issue on Recent Developments in Differential Equations
  204. Fractional virus epidemic model on financial networks
  205. Special Issue on Recent Developments in Differential Equations
  206. Reductions and conservation laws for BBM and modified BBM equations
  207. Special Issue on Recent Developments in Differential Equations
  208. Extinction of a two species non-autonomous competitive system with Beddington-DeAngelis functional response and the effect of toxic substances
Downloaded on 9.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/math-2016-0056/html
Scroll to top button