Startseite Naturwissenschaften Degradation of PVA (polyvinyl alcohol) in wastewater by advanced oxidation processes
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Degradation of PVA (polyvinyl alcohol) in wastewater by advanced oxidation processes

  • Weihua Sun EMAIL logo , Lujun Chen und Jianlong Wang
Veröffentlicht/Copyright: 18. März 2017
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Advanced oxidation processes (AOPs) constitute a promising technology to treat wastewater containing organic pollutants that are not easily biodegradable. They have received increasing attention in the research and development of wastewater treatment technologies in recent decades for their removal or degradation of recalcitrant pollutants or as pretreatments to convert pollutants into smaller compounds, which can be treated using conventional biological methods. Polyvinyl alcohol (PVA) is a typical refractory organic pollutant. It has received special attention due to its low biodegradability and the large amount of PVA-containing wastewater discharged from textile and paper mills. This review focuses on PVA removal and PVA wastewater pretreatment by AOPs, which include ozonation, Fenton oxidation, persulfate oxidation, ultrasound cavitation, ionizing radiation, photocatalytic oxidation, wet air oxidation and electrochemical oxidation. The mechanistic degradation pathways of PVA by AOPs are also discussed. In addition, a new classification of AOPs is applied for PVA treatment.

Funding statement: This study was accomplished under the Project 51508330 supported by NSFC, and the Project 2015M570377 funded by China Postdoctoral Science Foundation.

References

1 Yoshio I, Henry C. Polyvinyl alcohols. San Francisco, USA: SRI Consulting, 2010Suche in Google Scholar

2 Xiao Y-T, Xu S-S, Li Z-H. J Cent South Univ Technol. 2011;18:96–10010.1007/s11771-011-0665-ySuche in Google Scholar

3 Takahashi M, Chiba K, Li P. J Phys Chem B. 2007;111:11443–11446.10.1021/jp074727mSuche in Google Scholar

4 Shan JC, Guan Y, Zheng QK, Han JS, Liu QS, Pu ZY. J Appl Polym Sci. 2009;113:860–867.10.1002/app.29966Suche in Google Scholar

5 Lei LC, Hu XJ, Yue PL, Bossmann SH, Gob S, Braun AM. J Photochem Photobiol A. 1998;116:159–166.10.1016/S1010-6030(98)00293-7Suche in Google Scholar

6 Hao JH, Zhao QS. Desalination. 1994;98:353–360.10.1016/0011-9164(94)00161-8Suche in Google Scholar

7 Mo JH, Lee YH, Kim J, Jeong JY, Jegal J. Dyes Pigm. 2008;76:429–434.10.1016/j.dyepig.2006.09.007Suche in Google Scholar

8 Porter JJ. J Membr Sci. 1998;151:45–53.10.1016/S0376-7388(98)00236-1Suche in Google Scholar

9 Lin SH, Lan WJ. Sep Technol. 1995;5:97–103.10.1016/0956-9618(95)00111-ISuche in Google Scholar

10 He Y, Wang X, Xu J, Yan J, Ge Q, Gu X, et al. Bioresour Technol. 2013;133:150–15710.1016/j.biortech.2013.01.074Suche in Google Scholar PubMed

11 Lee SW, Haam SJ, Kwak JW, Jang JH, Lee YC. Environ Technol. 1999;20:277–283.10.1080/09593332008616818Suche in Google Scholar

12 Ciner F, Solmaz SKA, Yonar T, Ustun GE. Int J Environ Pollut. 2003;19:403–407.10.1504/IJEP.2003.004303Suche in Google Scholar

13 Choi KK, Park CW, Kim SY, Lyoo WS, Lee SH, Lee JW. J Microbiol Biotechnol. 2004;14:1009–1013.Suche in Google Scholar

14 Liu RR, Tian Q, Yang B, Chen JH. Int J Environ Sci Technol. 2010;7:111–118.10.1007/BF03326122Suche in Google Scholar

15 Jing G, Zhou Z, Li Y, Dong M. Chin J Environ Eng. 2008;2:1594–1598.Suche in Google Scholar

16 Lin C-C, Lee L-T, Hsu L-J. J Photochem Photobiol A. 2013;252:1–7.10.1016/j.jphotochem.2012.10.017Suche in Google Scholar

17 Zhang SJ, Yu HQ. Water Res. 2004;38:309–316.10.1016/j.watres.2003.09.020Suche in Google Scholar

18 Oh SY, Kim HW, Park JM, Park HS, Yoon C. J Hazard Mater. 2009;168:346–351.10.1016/j.jhazmat.2009.02.065Suche in Google Scholar

19 Jo HJ, Lee SM, Kim HJ, Kim JG, Choi JS, Park YK, et al. J Radioanal Nucl Chem. 2006;268:145–150.10.1007/s10967-006-0140-7Suche in Google Scholar

20 Wu Y, Lian Y, Liu J, Zhu H. Technol Water Treat. 2008a;34:32–34 59.Suche in Google Scholar

21 Kim S, Kim TH, Park C, Shin EB. Desalination. 2003;155:49–57.10.1016/S0011-9164(03)00238-8Suche in Google Scholar

22 Lei L. Acta Scientiae Circumstantiae. 2000;20:139–144.Suche in Google Scholar

23 Sun ZS, Yang Y, Chen YX. Acta Energiae Solaris Sinica. 2004;25:760–763.Suche in Google Scholar

24 Xia LX, Li KL, Pang J, Cao GY, Xi ZW. Environ Chem. 2000;19:556–560.Suche in Google Scholar

25 Hai FI, Yamamoto K, Fukushi K. Crit Rev Environ Sci Technol. 2007;37:315–377.10.1080/10643380601174723Suche in Google Scholar

26 Qian D, Du GC, Chen J. World J Microbiol Biotechnol. 2004;20:587–591.10.1023/B:WIBI.0000043172.83610.08Suche in Google Scholar

27 Larking DM, Crawford RJ, Christie GBY, Lonergan GT. Appl Environ Microbiol. 1999;65:1798–1800.10.1128/AEM.65.4.1798-1800.1999Suche in Google Scholar PubMed PubMed Central

28 Cao Y, Hua Z, Chen J. J Food Sci Biotechnol. 2005;24:33–37.Suche in Google Scholar

29 Bhat NV, Nate MM, Kurup MB, Bambole VA, Sabharwal S. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms. 2005;237:585–592.10.1016/j.nimb.2005.04.058Suche in Google Scholar

30 Glaze WH, Kang JW, Chapin DH. Ozone Sci Eng. 1987;9:335–352.10.1080/01919518708552148Suche in Google Scholar

31 Bigda RJ. Chem Eng Prog. 1995;91:62–66.10.1080/00306525.1995.9633766Suche in Google Scholar

32 Ollis DF. Comparative aspects of advanced oxidation processes, in: Emerging technologies in hazardous waste management III Amer Chem Soc, 1993:67–76.10.1021/bk-1993-0518.ch002Suche in Google Scholar

33 Perez JAS, Sanchez IMR, Carra I, Reina AC, Lopez JLC, Malato S. J Hazard Mater. 2013;244:195–203.10.1016/j.jhazmat.2012.11.015Suche in Google Scholar

34 Scott JP, Ollis DF. Environ Prog. 1995;14:88–103.10.1002/ep.670140212Suche in Google Scholar

35 Marco A, Esplugas S, Saum G. Water Sci Technol. 1997;35:321–327.10.2166/wst.1997.0147Suche in Google Scholar

36 Kayser R. 1996 Proceedings of the International Conference on Oxidation Technology and Water Wastewater Treatment.Suche in Google Scholar

37 Scott JP, Ollis DF. J Environ Eng. 1996;122:1110–1114.10.1061/(ASCE)0733-9372(1996)122:12(1110)Suche in Google Scholar

38 Xue X, Jin Q. Environ Prot. 2001;6:13–15.10.1108/rr.2001.15.6.13.315Suche in Google Scholar

39 Munter R. Proc Est Acad Sci Chem. 2001;50:59–80.10.3176/chem.2001.2.01Suche in Google Scholar

40 Hrubec J. Quality and treatment of drinking water II. The handbook of environmental chemistry Vol. 5. Berlin, Heidelberg: Springer Verlag, 1998 .10.1007/978-3-540-68089-5Suche in Google Scholar

41 Nawrocki J, Kasprzyk-Hordern B. Appl Catal B. 2010;99:27–42.10.1016/j.apcatb.2010.06.033Suche in Google Scholar

42 Hu S, Li J, Huang W, Sun W, Zhang S. Min Resour Geol. 2003;17:82–86.Suche in Google Scholar

43 Poyatos JM, Munio MM, Almecija MC, Torres JC, Hontoria E, Osorio F. Water Air Soil Pollut. 2010;205:187–204.10.1007/s11270-009-0065-1Suche in Google Scholar

44 Matilainen A, Sillanpaa M. Chemosphere. 2010;80:351–365.10.1016/j.chemosphere.2010.04.067Suche in Google Scholar PubMed

45 Sun WH, Chen LJ, Tian JP, Wang JL, He SJ. Environ Eng Manag J. 2013b;12:1323–1328.10.30638/eemj.2013.162Suche in Google Scholar

46 Sun W, Chen J, Chen L, Wang J, Zhang Y. Chemosphere. 2016;115:57–61.10.1016/j.chemosphere.2016.04.030Suche in Google Scholar PubMed

47 Pera-Titus M, Garcia-Molina V, Banos MA, Gimenez J, Esplugas S. Appl Catal B. 2004;47:219–256.10.1016/j.apcatb.2003.09.010Suche in Google Scholar

48 Cataldo F, Angelini G. Polym Degrad Stab. 2006;91:2793–2800.10.1016/j.polymdegradstab.2006.02.018Suche in Google Scholar

49 Shin HS, Yoo KS, Kwon JC, Lee CY. Environ Technol. 1999;20:325–330.10.1080/09593332008616824Suche in Google Scholar

50 Safarzadeh-Amiri A, Bolten JR, Cater SR. J Adv Oxid Technol. 1996;1:18–26.10.1515/jaots-1996-0105Suche in Google Scholar

51 Garrido-Ramírez EG, Theng BKG, Mora ML. Appl Clay Sci. 2010;47:182–192.10.1016/j.clay.2009.11.044Suche in Google Scholar

52 Brillas E, Sirés I, Oturan MA. Chem Rev. 2009;109:6570–6631.10.1021/cr900136gSuche in Google Scholar

53 Lücking F, Köser H, Jank M, Ritter A. Water Res. 1998;32:2607–2614.10.1016/S0043-1354(98)00016-5Suche in Google Scholar

54 Fenton HJH. J Chem Soc. 1894;65:899–910.10.1039/CT8946500899Suche in Google Scholar

55 Xu LJ, Wang JL. J Hazard Mater. 2011;186:256–26410.1016/j.jhazmat.2010.10.116Suche in Google Scholar

56 Pignatello JJ. Environ Sci Technol. 1992;26:944–951.10.1021/es00029a012Suche in Google Scholar

57 Barbeni M, Minero C, Pelizzetti E, Borgarello E, Serpone N. Chemosphere. 1987;16:2225–2237.10.1016/0045-6535(87)90281-5Suche in Google Scholar

58 Spacek W, Bauer R, Heisler G. Chemosphere. 1995;30:477–484.10.1016/0045-6535(94)00426-USuche in Google Scholar

59 Gau SH, Chang FS. Water Sci Technol. 1996;34:455–462.10.2166/wst.1996.0654Suche in Google Scholar

60 Murphy AP, Boegli WJ, Price MK, Moody CD. Environ Sci Technol. 1989;23:166–169.10.1021/es00179a004Suche in Google Scholar

61 Guimaraes JR, Farah CRT, Maniero MG, Fadini PS. J Environ Manage. 2012;107:96–101.10.1016/j.jenvman.2012.04.024Suche in Google Scholar

62 Mendez JAO, Melian JAH, Arana J, Rodriguez JMD, Diaz OG, Pena JP. Appl Catal B. 2015;163:63–73.10.1016/j.apcatb.2014.07.032Suche in Google Scholar

63 Navarro S, Fenoll J, Vela N, Ruiz E, Navarro G. Chem Eng J. 2011;167:42–49.10.1016/j.cej.2010.11.105Suche in Google Scholar

64 Tay KS, Rahman NA, Bin Abas MR. Environ Chem Lett. 2011;9:539–546.10.1007/s10311-011-0317-3Suche in Google Scholar

65 Masomboon N, Chen CW, Anotai J, Lu MC. Chem Eng J. 2010;159:116–122.10.1016/j.cej.2010.02.063Suche in Google Scholar

66 Lin SH, Lo CC. Water Res. 1997;31:2050–2056.10.1016/S0043-1354(97)00024-9Suche in Google Scholar

67 Huang MH, Shih YP, Liu SM. J Environ Sci Health A. 2002;37:29–41.10.1081/ESE-100108480Suche in Google Scholar

68 Kang SF, Liao CH, Po ST. Chemosphere. 2000;41:1287–1294.10.1016/S0045-6535(99)00524-XSuche in Google Scholar

69 Bossmann SH, Oliveros E, Gob S, Kantor M, Goppert A, Lei L, et al. Water Sci Technol. 2001;44:257–262.10.2166/wst.2001.0300Suche in Google Scholar

70 Huang K-Y, Wang C-T, Chou W-L, Shu C-M. Int J Photoenergy. 2013;2013:1–9.10.1155/2013/841762Suche in Google Scholar

71 Gronroos A, Pirkonen P, Heikkinen J, Ihalainen J, Mursunen H, Sekki H. Ultrason Sonochem. 2001;8:259–264.10.1016/S1350-4177(01)00086-4Suche in Google Scholar

72 Sahoo PK, Mohapatra R, Sahoo A, Swain SK. J Appl Polym Sci. 2003;88:3196–3201.10.1002/app.12158Suche in Google Scholar

73 Zhang SJ, Yu HQ, Ge XW, Zhu RF. Ind Eng Chem Res. 2005;44:1995–2001.10.1021/ie049097eSuche in Google Scholar

74 Chen YX, Sun ZS, Yang Y, Ke Q. J Photochem Photobiol A. 2001;142:85–89.10.1016/S1010-6030(01)00477-4Suche in Google Scholar

75 Chen GH, Lei LC, Yue PL, Cen PL. Ind Eng Chem Res. 2000;39:1193–1197.10.1021/ie990528gSuche in Google Scholar

76 Won YS, Baek SO, Tavakoli J. Ind Eng Chem Res. 2001;40:60–66.10.1021/ie000658lSuche in Google Scholar

77 Lei LC, Wang DH. Chin J Chem Eng. 2000;8:52–56.Suche in Google Scholar

78 Kang SF, Liao CH, Chen MC. Chemosphere. 2002;46:923–928.10.1016/S0045-6535(01)00159-XSuche in Google Scholar

79 Sun Y, Hua X, Ge R, Guo A, Guo Z, Dong D, et al. Environ Sci Pollut Res. 2013c;20:5797–580510.1007/s11356-013-1604-2Suche in Google Scholar PubMed

80 Sahinkaya S, Aygun A, Sevimli MF. 2008:803–810. 838 Sgem 2008: 8th International Scientific Conference, Vol I, Conference Proceedings.Suche in Google Scholar

81 Zhang Y, Rong W, Fu Y, Ma X. J Polym Environ. 2011;966–970.10.1007/s10924-011-0350-0Suche in Google Scholar

82 Kwon S, Fan M, Cooper AT, Yang HQ. Crit Rev Environ Sci Technol. 2008;38:197–226.10.1080/10643380701628933Suche in Google Scholar

83 Sun Z, Chen Y, Yang Y. Acta Energiae Solaris Sinica. 2001;22:87–90.Suche in Google Scholar

84 Hsu L-J, Lee L-T, Lin C-C. Chem Eng J. 2011;173:698–705.10.1016/j.cej.2011.07.068Suche in Google Scholar

85 Kuznetsova OG, Zytner YD, Makarov KA. J Appl Chem Ussr. 1992;65:2067–2070.Suche in Google Scholar

86 Chu LB, Wang JL, Wang B. Radiat Phys Chem. 2010;79:912–914.10.1016/j.radphyschem.2010.03.007Suche in Google Scholar

87 Wasiewicz M, Chmielewski AG, Getoff N. Radiat Phys Chem. 2006;75:201–209.10.1016/j.radphyschem.2005.08.015Suche in Google Scholar

88 Hu J, Wang J. J Tsinghua Univ (Sci &Tech). 2009;49 w27,111–113.Suche in Google Scholar

89 Ilcin M, Hola O, Bakajova B, Kucerik J. J Radioanal Nucl Chem. 2010;283:9–13.10.1007/s10967-009-0321-2Suche in Google Scholar

90 Danno A. J Phys Soc Japan. 1958;13:614–617.10.1143/JPSJ.13.614Suche in Google Scholar

91 Chen WX, Bao HY, Zhang MW. Radiat Phys Chem. 1985;26:43–47.Suche in Google Scholar

92 Sun W, Tian J, Chen L, He S, Wang J. Environ Sci Pollut Res. 2012;19:3178–3184.10.1007/s11356-012-0821-4Suche in Google Scholar PubMed

93 Sun W, Chen L, Tian J, Wang J, He S. Environ Eng Manag J. 2013a;12:1323–1328.10.30638/eemj.2013.162Suche in Google Scholar

94 Sonntag C. Free-radical-induced DNA damage and its repair. Berlin: Springer-Verlag, 2006.10.1007/3-540-30592-0Suche in Google Scholar

95 Adewuyi YG. Environ Sci Technol. 2005;39:8557–8570.10.1021/es0509127Suche in Google Scholar PubMed

96 Koda S, Taguchi K, Futamura K. Ultrason Sonochem. 2011;18:276–281.10.1016/j.ultsonch.2010.06.007Suche in Google Scholar PubMed

97 Taghizadeh MT, Mehrdad A. J Polymer Sci B. 2004;42:445–451.10.1002/polb.10741Suche in Google Scholar

98 Wu Y, Lian Y, Liu J, Zhu T. Technol Water Treat. 2008b;34:32–34 ;59.Suche in Google Scholar

99 Mohod AV, Gogate PR. Ultrason Sonochem. 2011;18:727–734.10.1016/j.ultsonch.2010.11.002Suche in Google Scholar

100 Taghizadeh MT, Mehrdad A. Ultrason Sonochem. 2003;10:309–313.10.1016/S1350-4177(03)00110-XSuche in Google Scholar

101 Lei LC, Shen XY, He F. Chin J Chem Eng. 2003;11:577–582.Suche in Google Scholar

102 Giroto JA, Guardani R, Teixeira ACSC, Nascimento CAO. Chem Eng Process. 2006;45:523–532.10.1016/j.cep.2005.12.001Suche in Google Scholar

103 Giroto JA, Teixeira ACSC, Nascimento CAO, Guardani R. Chem Eng Process. 2008;47:2361–2369.10.1016/j.cep.2008.01.014Suche in Google Scholar

104 Gogate PR, Pandit AB. Adv Environ Res. 2004;8:553–597.10.1016/S1093-0191(03)00031-5Suche in Google Scholar

105 Silva AMT, Vaz RNP, Quinta-Ferreira RM, Levec J. Can J Chem Eng. 2003;81:566–573.10.1002/cjce.5450810331Suche in Google Scholar

106 Kim K, Fujita M, Daimon H, Fujie K. J Chem Eng Japan. 2004;37:744–750.10.1252/jcej.37.744Suche in Google Scholar

107 Yan B, Wei CH, Hu CS, Xie C, Wu JZ. J Environ Sci China. 2007;19:1424–1429.10.1016/S1001-0742(07)60232-0Suche in Google Scholar

108 Ghafoori S, Mehrvar M, Chan PK. Chem Eng J. 2014;245:133–14210.1016/j.cej.2014.01.055Suche in Google Scholar

109 Sekiguchi K, Sasaki C, Sakamoto K. Ultrason Sonochem. 2011;18:158–163.10.1016/j.ultsonch.2010.04.008Suche in Google Scholar

110 Wu Y, Chen H, Cao J, Fan C. Chin J Appl Chem. 2007;24:570–574.10.1016/j.spinee.2006.11.001Suche in Google Scholar

111 Sun W, Chen L, Zhang Y, Wang J. J Environ Sci. 2015;34:63–67.10.1016/j.jes.2015.01.020Suche in Google Scholar

112 Chiellini E, Corti A, Antone SD, Solaro R. Prog Polymer Sci. 2003;28:963–1014.10.1016/S0079-6700(02)00149-1Suche in Google Scholar

113 Solaro R, Corti A, Chiellini E. Polym Adv Technol. 2000;11:873–878.10.1002/1099-1581(200008/12)11:8/12<873::AID-PAT35>3.0.CO;2-VSuche in Google Scholar

114 Shannon MA, Bohn PW, Elimelech M, Georgiadis JG, Marinas BJ, Mayes AM. Nature. 2008;452:301–310.10.1038/nature06599Suche in Google Scholar

Received: 2017-2-27
Revised: 2017-2-27
Accepted: 2017-2-28
Published Online: 2017-3-18

© 2017 Walter de Gruyter GmbH, Berlin/Boston

Artikel in diesem Heft

  1. Editorial
  2. Excitation Kinetics of Oxygen O(1D) State in Low-Pressure Oxygen Plasma and the Effect of Electron Energy Distribution Function
  3. Using amino-functionalized Fe3O4-WO3 nanoparticles for diazinon removal from synthetic and real water samples in presence of UV irradiation
  4. Treatment of high salinity wastewater using CWPO process for reuse
  5. Electrochemical Advanced Oxidation Processes (EAOP) to degrade per- and polyfluoroalkyl substances (PFASs)
  6. Effect of feedstock impurities on activity and selectivity of V-Mo-Nb-Te-Ox catalyst in ethane oxidative dehydrogenation
  7. Photocatalytic Degradation of Azo Dyes Over Semiconductors Supported on Polyethylene Terephthalate and Polystyrene Substrates
  8. Effects of calcination temperature on sol-gel synthesis of porous La2Ti2O7 photocatalyst on degradation of Reactive Brilliant Red X3B
  9. ClO2-oxidation-based demulsification of oil-water transition layer in oilfields: An experimental study
  10. Semi-permanent hair dyes degradation at W/WO3 photoanode under controlled current density assisted by visible light
  11. Degradation of PVA (polyvinyl alcohol) in wastewater by advanced oxidation processes
  12. Degradation of imidacloprid insecticide in a binary mixture with propylene glycol by conventional fenton process
  13. Gemini surfactant-assisted synthesis of BiOBr with superior visible light-induced photocatalytic activity towards RhB degradation
  14. Photocatalytic paraquat degradation over TiO2 modified by hydrothermal technique in alkaline solution
  15. Enhancement of Profenofos Remediation Using Stimulated Bioaugmentation Technique
  16. Mechanistic insight on the sonolytic degradation of phenol at interface and bulk using additives
  17. Biosolubilization of low-grade rock phosphate by mixed thermophilic iron-oxidizing bacteria
  18. Degradation of methyl orange using dielectric barrier discharge water falling film reactor
  19. Rapid prediction of hydrogen peroxide concentration eletrogenerated with boron doped diamond electrodes
Heruntergeladen am 29.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/jaots-2017-0018/pdf
Button zum nach oben scrollen