Abstract
The phase relations of the Fe–Pt–Ho ternary system at 500 °C have been studied by using X-ray diffraction, scanning electron microscopy and energy dispersive spectroscopy techniques. The Ho3Pt4 phase is stable at 500 °C, and the introduction of Fe does not cause the Ho3Pt4 phase to be decomposed into the two neighbouring phases HoPt and HoPt2. The single phase ranges of α-Fe, Fe3Pt, FePt, FePt3 and Pt in Fe–Pt binary system are from 0 to 10 at.% Pt, 14 to 32 at.% Pt, 33 to 63 at.% Pt, 66 to 78 at.% Pt, and 82 to 100 at.% Pt, respectively. The highest solid solubility of Ho in the α-Fe, Fe3Pt, FePt, FePt3 and (Pt, Fe) phases is less than 1.5 at.% Ho, 2 at.% Ho, 2 at.% Ho, 1.5 at.% Ho and 1.5 at.% Ho, respectively. The isothermal section at 500 °C of the Fe–Pt–Ho ternary alloy phase diagram has been constructed, which consists of 19 single-phase regions, 35 two-phase regions and 17 three-phase regions. No new ternary compounds were found.
Funding source: National Natural Science Foundation of China
Award Identifier / Grant number: Unassigned
-
Research ethics: The local Institutional Review Board deemed the study exempt from review.
-
Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission.
-
Competing interests: The authors state no conflict of interest.
-
Research funding: This work was supported by the National Natural Science Foundation of China (Grant No: 52171054, 52361004) and the Guangxi Natural Science Foundation (No: 2021GXNSFAA220081).
-
Data availability: The raw data can be obtained on request from the corresponding author.
References
1. Weller, D., Parker, G., Mosendz, O., Champion, E., Stipe, B., Wang, X., Klemmer, T., Ju, G., Ajan, A. A HAMR media technology roadmap to an areal density of 4 Tb/in2. IEEE Trans. Magn. 2014, 50, 1–8. https://doi.org/10.1109/TMAG.2013.2281027.Suche in Google Scholar
2. Weller, D., Parker, G., Mosendz, O., Lyberatos, A., Mitin, D., Safonova, N. Y., Albrecht, M. Review article: FePt heat assisted magnetic recording media. J. Vac. Sci. Technol. 2016, B34, 060801. https://doi.org/10.1116/1.4965980.Suche in Google Scholar
3. Hono, K., Takahashi, Y. K., Ju, G., Thiele, J.-U., Ajan, A., Yang, X., Ruiz, R., Wan, L. Heat-assisted magnetic recording media materials. MRS Bull. 2018, 43, 93–99. https://doi.org/10.1557/mrs.2018.5.Suche in Google Scholar
4. Chiou, J.-Y., Chang, H. W., Chi, C.-C., Hsiao, C.-H., Ouyang, C. L100 FePt films with optimal (001) texture on amorphous SiO2/Si substrates for highdensity perpendicular magnetic recording media. ACS Appl. Nano Mater. 2019, 2, 5663–5673. https://doi.org/10.1021/acsanm.9b01192.Suche in Google Scholar
5. Papusoi, C., Le, T., Jubert, P.-O., Oswald, D., Ozdol, B., Tripathy, D., Dorsey, P., Desai, M. L10 FePt films with high TC capping layer for heat assisted magnetic recording (HAMR). J. Magn. Magn. Mater. 2019, 483, 249–265. https://doi.org/10.1016/j.jmmm.2019.03.076.Suche in Google Scholar
6. Kief, M., Victora, R. Materials for heat-assisted magnetic recording. MRS Bull. 2018, 43, 87–92. https://doi.org/10.1557/mrs.2018.2.Suche in Google Scholar
7. Takahashi, Y., Seki, T. O., Hono, K., Shima, T., Takanashi, K. Microstructure and magnetic properties of FePt and Fe/FePt polycrystalline films with high coercivity. J. Appl. Phys. 2004, 96, 475–481. https://doi.org/10.1063/1.1756688.Suche in Google Scholar
8. Wang, H., Mao, W. H., Ma, X. K., Zhang, H. Y., Chen, Y. B., He, Y. J., Jiang, E. Y. Improvement in hard magnetic properties of FePt films by N addition. J. Appl. Phys. 2004, 95, 2564–2568. https://doi.org/10.1063/1.1643785.Suche in Google Scholar
9. Rani, P., Thakur, J., Taya, A.,Kashyap, M. K. Effect of tetragonal distortion induced by interstitial C-doping in L10- FeNi. AIP Conf. Proc. 2019, 2115, 030497. https://doi.org/10.1063/1.5113336.Suche in Google Scholar
10. Ostanin, S., Razee, S. S. A., Staunton, J. B., Ginatempo, B., Bruno, E. Magnetocrystalline anisotropy and compositional order in Fe 0.5 Pt 0.5: calculations from an ab initio electronic model. J. Appl. Phys. 2003, 93, 453–457. https://doi.org/10.1063/1.1523147.Suche in Google Scholar
11. Staunton, J., Ostanin, S., Razee, S. S. A., Gyorffy, B., Szunyogh, L., Ginatempo, B., Bruno, E. Long-range chemical order effects upon the magnetic anisotropy of FePt alloys from an ab initio electronic structure theory. J. Phys.: Condens.Matter 2004, 16, S5623. https://doi.org/10.1088/0953-8984/16/48/019.Suche in Google Scholar
12. Sakuma, A. First principle calculation of the magnetocrystalline anisotropy energy of FePt and CoPt ordered alloys. J. Phys. Soc. Jpn. 1994, 63, 3053–3058. https://doi.org/10.1143/jpsj.63.3053.Suche in Google Scholar
13. Solovyev, I., Dederichs, P., Mertig, I. Origin of orbital magnetization and magnetocrystalline anisotropy in TX ordered alloys (where T= Fe, Co and X= Pd, Pt). Phys. Rev. B 1995, 52, 13419. https://doi.org/10.1103/PhysRevB.52.13419.Suche in Google Scholar
14. Leuty, Z. B., Mayanovic, R. A. Investigations of the magnetic perpendicular exchange bias in L10 FePt/NiO bilayer thin films. MRS Adv. 2018, 3, 2893–2898. https://doi.org/10.1557/adv.2018.421.Suche in Google Scholar
15. Abel, F. M., Tzitzios, V., Devlin, E., Alhassan, S., Sellmyer, D. J., Hadjipanayis, G. C. Enhancing the ordering and coercivity of L10 FePt nanostructures with bismuth additives for applications ranging from permanent magnets to catalysts. ACS Appl. Nano Mater. 2019, 2, 3146–3153. https://doi.org/10.1021/acsanm.9b00463.Suche in Google Scholar
16. McCallum, A. T., Krone, P., Springer, F., Brombacher, C., Albrecht, M., Dobisz, E., Grobis, M., Weller, D., Hellwig, O. L10 FePt based exchange coupled composite bit patterned films. Appl. Phys. Lett. 2011, 98, 242503. https://doi.org/10.1063/1.3599573.Suche in Google Scholar
17. Brombacher, C., Grobis, M., Lee, J., Fidler, J., Eriksson, T., Werner, T., Hellwig, O., Albrecht, M. L10 FePtCu bit patterned media. Nanotechnology 2011, 23, 025301. https://doi.org/10.1088/0957-4484/23/2/025301.Suche in Google Scholar PubMed
18. Obeidat, A., Aladerah, B., Qaseer, M.-K. Computational study of magnetic properties of L10 ordered FeNi and FePt binary alloys. J. Magn. Magn. Mater. 2022, 559, 169501. https://doi.org/10.1016/j.jmmm.2022.169501.Suche in Google Scholar
19. Aledealat, K., Aladerah, B., Obeidat, A., Gharaibeh, M. First-principles study of electronic structure and magnetic properties of L10-ordered FeNi, FePd, and FePt alloys. Heliyon 2021, 7, e08639. https://doi.org/10.1016/j.heliyon.2021.e08639.Suche in Google Scholar PubMed PubMed Central
20. Bronger, W. J. Less-Common Met. 1967, 12, 63–68. https://doi.org/10.1016/0022-5088(67)90071-9.Suche in Google Scholar
21. Massalski, T. B., Ed. Binary Alloy Phase Diagrams, 2nd ed.; ASM International, Materials Park: Ohio, 1990; p. 1235.Suche in Google Scholar
22. Maccio, D., Rosalbino, F., Saccone, A., Delfino, S. Partial phase diagrams of the Dy-Pt and Ho-Pt systems and electrocatalytic behavior of the DyPt and HoPt phases. J. Alloys Compd. 2005, 391, 60–66. https://doi.org/10.1016/j.jallcom.2004.08.050.Suche in Google Scholar
23. Roe, G. J., O’Keefe, T. J. The Fe-Ho binary system. Metall. Mater. Trans. 1970, 1, 2565–2568. https://doi.org/10.1007/bf03038385.Suche in Google Scholar
24. Massalski, T. B., Ed. Binary Alloy Phase Diagrams, Vol. 2, 2nd ed.; ASM International, Materials Park: Ohio, 1990; p. 1712.Suche in Google Scholar
25. Massalski, T. B. Binary Alloy Phase Diagrams, Vol. 2, 2nd ed.; Materials Information Soc., Materials Park: Ohio, 1990; p. 1755.Suche in Google Scholar
26. Zunhong, W., Yanglin, W.,Cong, W., Min, J.,Hongxiao, L., Yuping, R., Gaowu, Q. Redetermination of the Fe-Pt phase diagram by using diffusion couple technique combined with key alloys. Int. J. Mater. Res. 2022, 113, 428–439. https://doi.org/10.1515/ijmr-2021-8496.Suche in Google Scholar
27. Klug, H., Alexander, L. X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials; John Wilev and Sons: New York, 1974; p. 168.Suche in Google Scholar
28. JCPDS, Version 2.16. JCPDS Database; International Center for Diffraction Data: Newtown Square, PA, 1995.Suche in Google Scholar
29. Gao, X. Q., Gu, Z. F., Cheng, G., Xu, C. H. F., Peng, L., Du, Y. S. Phase equilibria in the Fe–Ho–Pt ternary system at 1173 K. J. Phase Equilib. Diffus. 2015, 36, 485–492. https://doi.org/10.1007/s11669-017-0549-4.Suche in Google Scholar
30. Xu, C. H. F., Gu, Z. F., Cheng, G., Ren, J., Zhou, H. Y., Lin, Y. Y., Liu, X. M. The thermal stability of R3Pt4 compounds. Metall. Mater. Trans. A 2010, 41, 57. https://doi.org/10.1007/s11661-009-0077-x.Suche in Google Scholar
31. Villars, P., Calvert, L. D. Pearson’s Handbook of Crystallographic Data for Intermetallic Phases; ASM International, Materials Park: Ohio, 1991.Suche in Google Scholar
32. Chengfu, X., Zhengfei, G., Gang, C., Lei, M., Bo, Z. Isothermal section of the Fe–Pt–Nd phase diagram at 900 °C. J. Alloys Compd. 2006, 424, 128–130. https://doi.org/10.1016/j.jallcom.2005.12.069.Suche in Google Scholar
33. Ren, J., Gu, Z., Cheng, G., Zhou, H. Solid-state phase equilibria in the Fe–Pt–Pr ternary system at 1173K. J. Alloys Compd. 2005, 394, 211–214. https://doi.org/10.1016/j.jallcom.2010.05.109.Suche in Google Scholar
34. Paienzona, A. J. Less-Common Met. 1977, 53, 133. https://doi.org/10.1007/bf02898267.Suche in Google Scholar
© 2023 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Original Papers
- Nanocrystalline PbS thin film produced by alkaline chemical bath deposition: effect of inhibitor levels and temperature on the physicochemical properties
- Effect of laser power on microstructure and tribological behavior of laser clad NiCr coating
- Mechanical characterization and evaluation of pitting corrosion resistance of a superferritic stainless steel model alloy 25Cr–6Mo–5Ni
- Factors dictating the extent of low elongation in high sulfur-containing bainitic steels
- Effect of process parameters on mechanical properties and wettability of polylactic acid by fused filament fabrication process
- Critical systematic investigation of the Cd–Ce system: phase stability and Gibbs energies of formation and equilibria via thermodynamic description
- Experimental study of the phase relations of the Fe–Pt–Ho ternary system at 500 °C
- Ultraviolet-B radiation from Gd (III) doped hardystonite
- Photoluminescence features of trivalent holmium doped Ca2La8(SiO4)6O2 phosphors
- Thermal stability of Al3BC3 powders under a nitrogen atmosphere
- News
- DGM – Deutsche Gesellschaft für Materialkunde
Artikel in diesem Heft
- Frontmatter
- Original Papers
- Nanocrystalline PbS thin film produced by alkaline chemical bath deposition: effect of inhibitor levels and temperature on the physicochemical properties
- Effect of laser power on microstructure and tribological behavior of laser clad NiCr coating
- Mechanical characterization and evaluation of pitting corrosion resistance of a superferritic stainless steel model alloy 25Cr–6Mo–5Ni
- Factors dictating the extent of low elongation in high sulfur-containing bainitic steels
- Effect of process parameters on mechanical properties and wettability of polylactic acid by fused filament fabrication process
- Critical systematic investigation of the Cd–Ce system: phase stability and Gibbs energies of formation and equilibria via thermodynamic description
- Experimental study of the phase relations of the Fe–Pt–Ho ternary system at 500 °C
- Ultraviolet-B radiation from Gd (III) doped hardystonite
- Photoluminescence features of trivalent holmium doped Ca2La8(SiO4)6O2 phosphors
- Thermal stability of Al3BC3 powders under a nitrogen atmosphere
- News
- DGM – Deutsche Gesellschaft für Materialkunde