Home Factors dictating the extent of low elongation in high sulfur-containing bainitic steels
Article
Licensed
Unlicensed Requires Authentication

Factors dictating the extent of low elongation in high sulfur-containing bainitic steels

  • Baoqi Dong , Tingping Hou EMAIL logo , Peter Hodgson , Oleg Isayev , Oleksandr Hress , Serhii Yershov and Kaiming Wu EMAIL logo
Published/Copyright: November 17, 2023
Become an author with De Gruyter Brill

Abstract

The elongation of two low temperature bainitic steels with different sulfur contents was compared under the same heat treatment. Elongations of 1.0 ± 0.5 % and 11.4 ± 1.5 % were achieved for the high- and low-S steels, respectively. A high carbon concentration and fine grain size leading to over stability of the retained austenite in the high-S steel is the main reason for the poor elongation. The differences in carbon concentration and grain size between the two steels can be attributed to pinning by MnS, where the existence of a large number of long slivers of MnS in the high-S steel was responsible for the pinning. The stability of retained austenite was also analyzed by the local tensile elongation and hardness, and the volume fraction of retained austenite that transformed to martensite during the tensile process.


Corresponding authors: Tingping Hou and Kaiming Wu, The State Key Laboratory for Refractories and Metallurgy, Hubei Collaborative Innovation Center on Advanced Steels, International Research Institute for Steel Technology, Wuhan University of Science and Technology, 947 Heping Avenue, 430081 Wuhan, P.R. China, E-mail: (T. Hou), (K. Wu)

  1. Research ethics: Not applicable.

  2. Author contributions: Conceptualization: Tingping Hou and Kaiming Wu; formal analysis: Oleg Isayev, Oleksandr Hress and Serhii Yershov; investigation: Baoqi Dong and Tingping Hou; resources: Kaiming Wu; data curation: Baoqi Dong; writing-original fraft preparation: Baoqi Dong; writing-review and editing: Peter Hodgson, Tingping Hou and Kaiming Wu; Supervision: Kaiming Wu

  3. Competing interests: The authors state no conflict of interest.

  4. Research funding: The authors are grateful for the financial support from the National Natural Science Foundation of China (Grant Nos. U20A20279, 51671149), the Key research and development program of Hubei Province (Grant No. 2021BAA057) and the 111 project.

  5. Data availability: The raw data can be obtained on request from the corresponding author.

References

1. Garcia-Mateo, C., Peet, M., Caballero, F. G., Bhadeshia, H. K. D. H. Mater. Sci. Technol. 2013, 20, 814. https://doi.org/10.1179/026708304225017355.Search in Google Scholar

2. Garcia-Mateo, C., Caballero, F. G., Bhadeshia, H. K. D. H. ISIJ Int. 2007, 43, 1821. https://doi.org/10.2355/isijinternational.43.1821.Search in Google Scholar

3. Caballero, F. G., Bhadeshia, H. K. D. H., Mawella, K. J. A., Jones, D. G., Brown, P. Mater. Sci. Technol. 2002, 18, 279. https://doi.org/10.1179/026708301225000725.Search in Google Scholar

4. Garcia-Mateo, C., Caballero, F. G., Bhadeshia, H. K. D. H. J. Phys. IV 2003, 112, 285. https://doi.org/10.1051/jp4:2003884.10.1051/jp4:2003884Search in Google Scholar

5. Garcia-Mateo, C., Caballero, F. G., Chao, J., Capdevila, C., Andres, C. G. D. J. Mater. Sci. 2009, 44, 4617. https://doi.org/10.1007/s10853-009-3704-4.Search in Google Scholar

6. Garcia-Mateo, C., Caballero, F. G. Mater. Trans. 2005, 46, 1839. https://doi.org/10.2320/matertrans.46.1839.Search in Google Scholar

7. Luo, P., Gao, G., Zhang, H., Tan, Z., Misra, R. D. K. Mater. Sci. Eng. A 2016, 661, 1. https://doi.org/10.1016/j.msea.2016.03.006.Search in Google Scholar

8. De-Cooman, B. C. Curr. Opin. Solid State Mater. 2004, 8, 285–303. https://doi.org/10.1016/j.cossms.2004.10.002.Search in Google Scholar

9. Choi, K. S., Soulami, A., Liu, W. N., Sun, X., Khaleel, M. A. ISIJ Int. 1992, 32, 1311. https://doi.org/10.2355/isijinternational.32.1311.Search in Google Scholar

10. Garcia-Mateo, C., Paul, G., Somani, M., Porter, D., Bracke, L. Metals 2017, 7, 159. https://doi.org/10.3390/met7050159.Search in Google Scholar

11. Hu, F., Wu, K. M., Hou, T. P., Peter, H., Rodionova, I. Metallurgist 2017, 60, 1295. https://doi.org/10.1007/s11015-017-0444-6.Search in Google Scholar

12. Caballero, F. G., Bhadeshia, H. K. D. H., Mawella, K. J. A., Jones, D. G., Brown, P. Mater. Sci. Technol. 2013, 17, 517. https://doi.org/10.1179/026708301101510357.Search in Google Scholar

13. Bhadeshia, H. K. D. H., Edmonds, D. V. Met. Sci. 2013, 17, 420. https://doi.org/10.1179/030634583790420646.Search in Google Scholar

14. Jimenez-Melero, E., Diijk, N. H. V., Zhao, L., Sietsma, J., Offerman, S. E., Wright, J. P., Zwaag, S. V. Acta Mater. 2007, 55, 6713. https://doi.org/10.1016/j.actamat.2007.08.040.Search in Google Scholar

15. Lee, S., Lee, S. J., De-Cooman, B. C. Scr. Mater. 2011, 65, 225. https://doi.org/10.1016/j.scriptamat.2011.04.010.Search in Google Scholar

16. Matsuoka, Y., Iwasaki, T., Nakada, N., Tsuchiyama, T., Takaki, S. ISIJ Int. 2013, 53, 1224. https://doi.org/10.2355/isijinternational.53.1224.Search in Google Scholar

17. Wang, J., Zwaag, S. V. D. Metall. Mater. Trans. A 2001, 32, 1527. https://doi.org/10.1007/s11661-001-0240-5.Search in Google Scholar

18. Dong, B. Q., Hou, T. P., Zhou, W., Zhang, G. H., Wu, K. M. Metals 2018, 8, 931. https://doi.org/10.3390/met8110931.Search in Google Scholar

19. Lindström, A. Austempered High Silicon Steel: Investigation of Wear Resistance in a Carbide Free Microstructure. MSc thesis, Lulea University of Technology, Sweden, 2006.Search in Google Scholar

20. Bhadeshia, H. K. D. H., Edmonds, D. V. Acta Mater. 1980, 28, 1265. https://doi.org/10.1016/0001-6160(80)90082-6.Search in Google Scholar

21. Pinard, P. T., Schwedt, A., Ramazani, A., Prahl, U., Richter, S. Microsc. Microanal. 2013, 19, 996. https://doi.org/10.1017/S1431927613001554.Search in Google Scholar PubMed

22. Hasan, H., Peet, M. J., Avettand-Fènoë, M. N., Bhadeshia, H. K. D. H. Mater. Sci. Eng. A 2014, 615, 340. https://doi.org/10.1016/j.msea.2014.07.097.Search in Google Scholar

23. Zare, A., Ekrami, A. Mater. Sci. Eng. A 2011, 530, 440. https://doi.org/10.1016/j.msea.2011.09.108.Search in Google Scholar

24. Bruce, T., Long, H., Slatter, T., Dwyer-Joyce, R. Wind Energy 2016, 19, 1903. https://doi.org/10.1002/we.1958.Search in Google Scholar

25. Stephenson, K. J., Was, G. S. J. Nucl. Mater. 2016, 481, 214. https://doi.org/10.1016/j.jnucmat.2016.09.001.Search in Google Scholar

26. Xiong, X. C., Chen, B., Huang, M. X., Wang, J. Scr. Mater. 2013, 68, 321. https://doi.org/10.1016/j.scriptamat.2012.11.003.Search in Google Scholar

27. Mahieu, J., Maki, J., De-Cooman, B. C., Claessens, S. Metall. Mater. Trans. A 2002, 33, 2573. https://doi.org/10.1007/s11661-002-0378-9.Search in Google Scholar

28. Biswas, D. K., Venkatraman, M., Narendranath, C. S., Chatterjee, U. K. Metall. Trans. A 1992, 23, 1479. https://doi.org/10.1007/BF02647331.Search in Google Scholar

29. Chang, K., Feng, W. M., Chen, L. Q. Acta Mater. 2009, 57, 5229. https://doi.org/10.1016/j.actamat.2009.07.025.Search in Google Scholar

30. Guo, L., Roelofs, H., Lembke, M. I., Bhadeshia, H. K. D. H. Mater. Sci. Technol. 2016, 10, 1. https://doi.org/10.1080/02670836.2016.1258157.Search in Google Scholar

31. Matsuzaki, A., Bhadeshia, H. K. D. H. Mater. Sci. Technol. 1999, 15, 518. https://doi.org/10.1179/026708399101506210.Search in Google Scholar

32. Lan, L. Y., Qiu, C. L., Zhao, D. W., Gao, X. H., Du, L. X. Mater. Sci. Technol. 2011, 27, 1657. https://doi.org/10.1179/1743284710Y.0000000026.Search in Google Scholar

Received: 2022-02-14
Accepted: 2023-03-15
Published Online: 2023-11-17
Published in Print: 2023-12-27

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 17.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2022-0078/html
Scroll to top button