Abstract
Trivalent gadolinium (Gd3+)-doped calcium zinc silicate (Ca2ZnSi2O7/hardystonite) with a molar composition of Ca2−xZnSi2O7:xGd3+ (x = 0.09 mol) was produced using a sol–gel system. The hardystonite was characterized using X-ray diffraction and Fourier transform infrared spectroscopy. The X-ray diffraction study revealed that the prepared sample contained a tetragonal phase of Ca2ZnSi2O7. The vibrational structures of the sample were studied using Fourier transform infrared spectroscopy measurements. The photoluminescence emission spectrum of the Ca1.91ZnSi2O7:0.09Gd3+ phosphor narrow band was optimized at 312 nm in the Ultraviolet-B region under excitation at 273 nm wavelength. Electron paramagnetic resonance study authenticates the presence of gadolinium (Gd) ions within the trivalent state in the Ca1.91ZnSi2O7:0.09Gd3+ host.
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: This paper was supported by the KU Research Professor Program of Konkuk University. This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2021R1A2C1092509).
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Gurav, J. L., Rao, A. V., Rao, A. P., Nadargi, D. Y., Bhagat, S. D. J. Alloys Compd. 2009, 476, 397. https://doi.org/10.1016/j.jallcom.2008.09.029.Search in Google Scholar
2. Lv, W., Guo, N., Jia, Y., Zhao, Q., You, H. Opt. Mater. 2013, 35, 1013. https://doi.org/10.1016/j.optmat.2012.12.014.Search in Google Scholar
3. Latifi, N., Eisazadeh, A., Marto, A. Environ. Earth Sci. 2014, 72, 91. https://doi.org/10.1007/s12665-013-2939-1.Search in Google Scholar
4. Singh, V., Annapurna Devi, Ch. B., Kaur, S., Rao, A. S., Singh, N. Optik 2021, 242, 167268. https://doi.org/10.1016/j.ijleo.2021.167268.Search in Google Scholar
5. Zaarei, D., Sarabi, A. A., Sharif, F., Kassiriha, S. M. J. Coat. Technol. Res. 2008, 5, 241. https://doi.org/10.1007/s11998-007-9065-5.Search in Google Scholar
6. Jung, K. Y., Kim, J. H., Kang, Y. C. J. Lumin. 2009, 129, 615. https://doi.org/10.1016/j.jlumin.2009.01.001.Search in Google Scholar
7. Singh, V., Annapurna Devi, Ch. B., Rupa Venkateswara Rao, B., Rao, A. S. J. Electron. Mater. 2023, 52, 50. https://doi.org/10.1007/s11664-022-10035-9.Search in Google Scholar
8. Das, S., Manam, J., Sharma, S. K. New J. Chem. 2017, 41, 5934. https://doi.org/10.1039/C7NJ00209B.Search in Google Scholar
9. Singh, V., Annapurna Devi, Ch. B., Kaur, S., Rao, A. S., Singh, N. Optik 2021, 243, 167322. https://doi.org/10.1016/j.ijleo.2021.167322.Search in Google Scholar
10. Gong, Y., Wang, Y., Jiang, Z., Xu, X., Li, Y. Mater. Res. Bull. 2009, 44, 1916. https://doi.org/10.1016/j.materresbull.2009.05.003.Search in Google Scholar
11. Sahu, I. P., Bisen, D. P., Brahme, N. Luminescence 2015, 30, 526. https://doi.org/10.1002/bio.2771.Search in Google Scholar PubMed
12. Zhang, H. W., Yamada, H., Terasaki, N., Xu, C. N. J. Electrochem. Soc. 2008, 155, J55. https://doi.org/10.1149/1.2816215.Search in Google Scholar
13. Qiuhonga, Z., Jingb, W., Haiyonga, N., Linglia, W. Rare Met. 2012, 31, 35. https://doi.org/10.1007/s12598-012-0458-y.Search in Google Scholar
14. Zhang, M., Wang, J., Ding, W., Zhang, Q. Opt. Mater. 2007, 30, 571. https://doi.org/10.1016/j.optmat.2007.01.008.Search in Google Scholar
15. Kodama, N., Tanii, Y., Yamaga, M. J. Lumin. 2000, 87-89, 1076. https://doi.org/10.1016/S0022-2313(99)00543-8.Search in Google Scholar
16. Tiwari, G., Brahme, N., Sharma, R., Bisen, D. P., Sao, S. K., Dhoble, S. J. RSC Adv. 2016, 6, 49317. https://doi.org/10.1039/C6RA04913C.Search in Google Scholar
17. Jaroszewski, K., Głuchowski, P., Chrunik, M., Jastrząb, R., Majchrowski, A., Kasprowicz, D. Opt. Mater. 2018, 75, 13. https://doi.org/10.1016/j.optmat.2017.10.013.Search in Google Scholar
18. Ma, J., Huang, B. X., Zhao, X. C., Hao, X. H., Wang, C. Z. Mater. Lett. 2019, 236, 566. https://doi.org/10.1016/j.matlet.2018.11.017.Search in Google Scholar
19. Singh, V., Kaur, S., Annapurna Devi, Ch. B., Rao, A. S., Joo, Ji. B. Optik 2022, 266, 169553. https://doi.org/10.1016/j.ijleo.2022.169553.Search in Google Scholar
20. Mohammadi, H., Hafezi, M., Nezafati, N., Heasarki, S., Nadernezhad, A., Ghazanfari, S. M. H., Sepantafar, M. J. Ceram. Sci. Technol. 2014, 5, 1. https://doi.org/10.4416/JCST2013-00027.Search in Google Scholar
21. Wu, C., Ramaswamy, Y., Soeparto, A., Zreiqat, H. J. Biomed. Mater. Res. A 2008, 86, 402. https://doi.org/10.1002/jbm.a.31623.Search in Google Scholar PubMed
22. Wu, C., Ramaswamy, Y., Chang, J., Woods, J., Chen, Y., Zreiqat, H. J. Biomed. Mater. Res. B 2008, 87B, 346. https://doi.org/10.1002/jbm.b.31109.Search in Google Scholar PubMed
23. Kamioka, H., Yamaguchi, T., Hirano, M., Kamiya, T., Hosono, H. J. Lumin. 2007, 122–123, 339. https://doi.org/10.1016/j.jlumin.2006.01.171.Search in Google Scholar
24. Jiang, L., Xiao, S., Yang, X., Zhang, X., Liu, X., Zhou, B., Jin, X. Mater. Sci. Eng. B 2013, 178, 123. https://doi.org/10.1016/j.jlumin.2006.01.171.Search in Google Scholar
25. Mondal, K., Manam, J. J. Lumin. 2018, 195, 259. https://doi.org/10.1016/j.jlumin.2017.11.028.Search in Google Scholar
26. Neeraj, S., Kijima, N., Cheetham, A. K. Solid State Commun. 2004, 131, 65. https://doi.org/10.1016/j.ssc.2004.03.050.Search in Google Scholar
27. Zhang, X., Li, W., Jang, K. H., Seo, H. J. Curr. Appl. Phys. 2012, 12, 299. https://doi.org/10.1016/j.cap.2011.06.024.Search in Google Scholar
28. Singh, V., Annapurna Devi, Ch. B., Rao, B. R. V., Rao, A. S., Singh, N., Mistry, B. M. Optik 2021, 226, 165932. https://doi.org/10.1016/j.ijleo.2020.165932.Search in Google Scholar
29. Chauhan, A. O., Gawande, A. B., Omanwar, S. K. J. Inorg. Organomet. Polym. Mater. 2016, 26, 1023. https://doi.org/10.1007/s10904-016-0415-6.Search in Google Scholar
30. Singh, V., Kokate, S., Natarajan, V. Optik 2020, 204, 164016. https://doi.org/10.1016/j.ijleo.2019.164016.Search in Google Scholar
31. Singh, V., Singh, N., Pathak, M. S., Natarajan, V., Jadhav, N. A. Optik 2019, 176, 650. https://doi.org/10.1016/j.ijleo.2018.09.021.Search in Google Scholar
32. Chen, F., Bu, W., Zhang, S., Liu, X., Liu, J., Xing, H., Xiao, Q., Zhou, L., Peng, W., Wang, L., Shi, J. Adv. Funct. Mater. 2011, 21, 4285. https://doi.org/10.1002/adfm.201101663.Search in Google Scholar
33. Yang, L. W., Zhang, Y. Y., Li, J. J., Li, Y., Zhong, J. X., Chu, P. K. Nanoscale 2010, 2, 2805. https://doi.org/10.1039/C0NR00326C.Search in Google Scholar PubMed
34. Chen, G., Liang, H., Liu, H., Somesfalean, G., Zhang, Z. Opt. Express 2009, 17, 16366. https://doi.org/10.1364/OE.17.016366.Search in Google Scholar PubMed
35. Lee, S. H., Kim, B. H., Na, H. B., Hyeon, T. Nanomed. Nanotechnol. 2014, 6, 196. https://doi.org/10.1002/wnan.1243.Search in Google Scholar PubMed
36. Xiao, Y.-D., Paudel, R., Liu, J., Ma, C., Zhang, Z.-S., Zhou, S.-K. Int. J. Mol. Med. 2016, 38, 1319. https://doi.org/10.3892/ijmm.2016.2744.Search in Google Scholar PubMed
37. Yan, G.-P., Robinson, L., Hogg, P. Radiography 2007, 13, e5. https://doi.org/10.1016/j.radi.2006.07.005.Search in Google Scholar
38. Singh, V., Annapurna Devi, Ch. B., Rao, A. S., Rao, J. L. Optik 2020, 208, 163632. https://doi.org/10.1016/j.ijleo.2019.163632.Search in Google Scholar
39. Singh, V., Borkotoky, S., Murali, A., Rao, J. L., Gundu Rao, T. K., Dhoble, S. J. Spectrochim. Acta Part A 2015, 139, 1. https://doi.org/10.1016/j.saa.2014.11.097.Search in Google Scholar PubMed
40. Prokhorov, A. D., Prokhorov, A. A., Chernush, L. F., Minyakaev, R., Dyakonov, V. P., Szymczak, H. Phys. Status Solidi B 2014, 251, 201. https://doi.org/10.1002/pssb.201350026.Search in Google Scholar
41. Hu, Q., Suzuki, H., Gao, H., Araki, H., Yang, W., Noda, T. Chem. Phys. Lett. 2003, 378, 299. https://doi.org/10.1016/j.cplett.2003.07.015.Search in Google Scholar
42. Tomozawa, M., Hong, J. W., Ryu, S. R. J. Non-Cryst. Solids 2005, 351, 12. https://doi.org/10.1016/j.jnoncrysol.2005.01.017.Search in Google Scholar
43. Furukawa, T., Fox, K. E., Whited, W. B. J. Chem. Phys. 1981, 75, 3226. https://doi.org/10.1063/1.44247.Search in Google Scholar
44. Sava, B. A., Vişan, T. U.P.B. Sci. Bull. Series B 2007, 69, 11–24.Search in Google Scholar
45. GaluskIna, I. О., lazIc, B., Armbruster, T., Galuskin, E. V., Gazeev, V. M., Zadov, A. E., Pertsev, N. N., Jeżak, L., Wrzalik, R., Gurbanov, A. G. Am. Mineral. 2009, 94, 1361. https://doi.org/10.2138/am.2009.3256.Search in Google Scholar
46. Schild, C., Wokaun, A., Baiker, A. J. Mol. Catal. 1990, 63, 223. https://doi.org/10.1016/0304-5102(90)85147-A.Search in Google Scholar
47. Rege, S. U., Yang, R. T. Chem. Eng. Sci. 2001, 56, 3781. https://doi.org/10.1016/S0009-2509(01)00095-1.Search in Google Scholar
48. Mokoena, P. P. Narrowband Ultraviolet B Emission from Gadolinium and Praseodymium Co-Activated Calcium Phosphate Phosphors for Phototherapy Lamps. MS Thesis, University of the Free State, South Africa, 2014. http://hdl.handle.net/11660/2187.Search in Google Scholar
49. Gandhi, Y., Rajanikanth, P., Rao, M. S., Kumar, V. R., Veeraiah, N., Piasecki, M. Opt. Mater. 2016, 57, 39. https://doi.org/10.1016/j.optmat.2016.04.015.Search in Google Scholar
50. Ramteke, D. D., Gedam, R. S. J. Rare Earths 2014, 32, 389. https://doi.org/10.1016/S1002-0721(14)60082-X.Search in Google Scholar
51. Padlyak, B. V., Drzewiecki, A., Padlyak, T. B., Adamiv, V. T., Teslyuk, I. M. Opt. Mater. 2018, 79, 302. https://doi.org/10.1016/j.optmat.2018.03.050.Search in Google Scholar
52. Chauhan, A. O., Gawande, A. B., Omanwar, S. K. Optik 2016, 127, 6647. https://doi.org/10.1016/j.ijleo.2016.04.131.Search in Google Scholar
53. Mohapatra, M., Rajeswari, B., Hon, N. S., Kadam, R. M., Keskar, M. S., Natarajan, V. Ceram. Int. 2015, 41, 8761. https://doi.org/10.1016/j.ceramint.2015.03.099.Search in Google Scholar
54. Tang, C., Liu, S., Liu, L., DanChen, P. J. Lumin. 2015, 160, 317. https://doi.org/10.1016/j.jlumin.2014.12.033.Search in Google Scholar
55. Weinstein, G. D., Gottlieb, A. B. Therapy of Moderate-To-Severe-Psoriasis, 2nd ed.; CRC Press: Boca Raton, Florida, 2003.10.1201/b14220Search in Google Scholar
56. Sonekar, R. P., Omanwar, S. K., Moharil, S. V., Dhopte, S. M., Muthal, P. L., Kondawar, V. K. Opt. Mater. 2007, 30, 622. https://doi.org/10.1016/j.optmat.2007.02.016.Search in Google Scholar
57. Rao, A. S., Rao, J. L., Ravi Kanth Kumar, V. V., Jayasankar, C. K., Lakshman, S. V. J. Phys. Status Solidi B 1992, 174, 183. https://doi.org/10.1002/pssb.2221740118.Search in Google Scholar
58. Petersen, M., Hafner, J., Marsman, M. J. Phys. Condens Matter. 2006, 18, 7021. https://doi.org/10.1088/0953-8984/18/30/007.Search in Google Scholar
59. Brodbeck, C. M., Iton, L. E. J. Chem. Phys. 1985, 83, 4285. https://doi.org/10.1063/1.445922.Search in Google Scholar
60. Griscom, D. L. J. Non-Cryst. Solids 1980, 40, 211. https://doi.org/10.1016/0022-3093(80)90105-2.Search in Google Scholar
61. Iton, L. E., Brodbeck, C. M., Suib, S. L., Stucky, G. D. J. Chem. Phys. 1983, 79, 1185. https://doi.org/10.1063/1.445922.Search in Google Scholar
62. Singh, V., Sivaramaiah, G., Rao, J. L., Kumaran, R. S., Singh, P. K., Kim, T. S., Kim, L. K. J. Mater. Sci. Mater. Electron. 2015, 26, 5195. https://doi.org/10.1007/s10854-015-3051-y.Search in Google Scholar
63. Murali, A., Chakradhar, R. P. S., Rao, J. L. Phys. B 2005, 364, 142. https://doi.org/10.1016/j.physb.2005.04.002.Search in Google Scholar
64. Culea, E., Pop, L., Simon, S. Mater. Sci. Eng. B 2004, 112, 59. https://doi.org/10.1016/j.mseb.2004.06.001.Search in Google Scholar
65. Furniss, D., Harris, E. A., Hollis, D. B. J. Phys. C: Solid State Phys. 1987, 20, L147. https://doi.org/10.1088/0022-3719/20/10/002.Search in Google Scholar
66. Rada, S., Dan, V., Rada, M., Culea, E. J. Non-Cryst. Solids 2010, 356, 474. https://doi.org/10.1016/j.jnoncrysol.2009.12.011.Search in Google Scholar
67. Morris, R. V. Geochim. Cosmochim. Acta 1975, 39, 621. https://doi.org/10.1016/0016-7037(75)90006-X.Search in Google Scholar
68. Tamboli, S., Nair, G. B., Dhoble, S. J., Burghate, D. K. Phys. B 2018, 535, 232. https://doi.org/10.1016/j.physb.2017.07.042.Search in Google Scholar
© 2023 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Original Papers
- Nanocrystalline PbS thin film produced by alkaline chemical bath deposition: effect of inhibitor levels and temperature on the physicochemical properties
- Effect of laser power on microstructure and tribological behavior of laser clad NiCr coating
- Mechanical characterization and evaluation of pitting corrosion resistance of a superferritic stainless steel model alloy 25Cr–6Mo–5Ni
- Factors dictating the extent of low elongation in high sulfur-containing bainitic steels
- Effect of process parameters on mechanical properties and wettability of polylactic acid by fused filament fabrication process
- Critical systematic investigation of the Cd–Ce system: phase stability and Gibbs energies of formation and equilibria via thermodynamic description
- Experimental study of the phase relations of the Fe–Pt–Ho ternary system at 500 °C
- Ultraviolet-B radiation from Gd (III) doped hardystonite
- Photoluminescence features of trivalent holmium doped Ca2La8(SiO4)6O2 phosphors
- Thermal stability of Al3BC3 powders under a nitrogen atmosphere
- News
- DGM – Deutsche Gesellschaft für Materialkunde
Articles in the same Issue
- Frontmatter
- Original Papers
- Nanocrystalline PbS thin film produced by alkaline chemical bath deposition: effect of inhibitor levels and temperature on the physicochemical properties
- Effect of laser power on microstructure and tribological behavior of laser clad NiCr coating
- Mechanical characterization and evaluation of pitting corrosion resistance of a superferritic stainless steel model alloy 25Cr–6Mo–5Ni
- Factors dictating the extent of low elongation in high sulfur-containing bainitic steels
- Effect of process parameters on mechanical properties and wettability of polylactic acid by fused filament fabrication process
- Critical systematic investigation of the Cd–Ce system: phase stability and Gibbs energies of formation and equilibria via thermodynamic description
- Experimental study of the phase relations of the Fe–Pt–Ho ternary system at 500 °C
- Ultraviolet-B radiation from Gd (III) doped hardystonite
- Photoluminescence features of trivalent holmium doped Ca2La8(SiO4)6O2 phosphors
- Thermal stability of Al3BC3 powders under a nitrogen atmosphere
- News
- DGM – Deutsche Gesellschaft für Materialkunde