Startseite Photoluminescence features of trivalent holmium doped Ca2La8(SiO4)6O2 phosphors
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Photoluminescence features of trivalent holmium doped Ca2La8(SiO4)6O2 phosphors

  • Vijay Singh EMAIL logo , Amol Nande und S. J. Dhoble
Veröffentlicht/Copyright: 31. August 2023
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

This study examines the optical properties of Ca2La8−x(SiO4)6O2:xHo3+ phosphors derived using the sol–gel method. X-ray diffraction data and Rietveld analysis confirmed that the phosphors formed in hexagonal phase with an average estimated crystalline size of 27 nm. The prominent excitation peak observed at wavelength 463 nm corresponding to excitation energy 2.68 eV was due to the 5I85G6 + 5F1 transition. The photoluminescence emission spectra revealed that the synthesized phosphors emitted in the green color region with the 5S2 + 5F45I8 transition, releasing 2.27 eV energy. The emission and excitation analyses revealed the presence of concentration quenching as the Ho3+ concentration exceeded 0.03 mol in the Ca2La8−x(SiO4)6O2:xHo3+ series. Further, photometry analysis demonstrated a color purity exceeding 94 %, which supports the candidacy of these phosphors for solid-state lighting applications.


Corresponding author: Vijay Singh, Department of Chemical Engineering, Konkuk University, Seoul 05029, Republic of Korea, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2021R1A2C1092509). This paper was supported by the KU Research Professor Program of Konkuk University.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Schroederm, L., Mathew, M. J. Solid State Chem. 1978, 26, 383. https://doi.org/10.1016/0022-4596(78)90173-1.Suche in Google Scholar

2. Shen, Y., Tok, A., Dong, Z. J. Am. Ceram. Soc. 2010, 93, 1176. https://doi.org/10.1111/j.1551-2916.2009.03563.x.Suche in Google Scholar

3. Choudary, B. M., Sridhar, C., Kantam, M. L., Venkanna, G. T., Sreedhar, B. J. Am. Chem. Soc. 2005, 127, 9948. https://doi.org/10.1021/ja0436594.Suche in Google Scholar PubMed

4. Chen, X., Wright, J. V., Conca, J. L., Peurrung, L. M. Environ. Sci. Technol. 1997, 31, 624. https://doi.org/10.1021/es950882f.Suche in Google Scholar

5. Singh, V., Singh, N., Pathak, M., Singh, P. K., Natarajan, V. Optik 2018, 171, 356. https://doi.org/10.1016/j.ijleo.2018.06.031.Suche in Google Scholar

6. Singh, V., Tiwari, M. K. Optik 2020, 206, 163600. https://doi.org/10.1016/j.ijleo.2019.163600.Suche in Google Scholar

7. Singh, V., Prasad, A., Kaur, S., Rao, A., Ravi, N., Kummara, V. K. Optik 2021, 242, 167263. https://doi.org/10.1016/j.ijleo.2021.167263.Suche in Google Scholar

8. Bharat, L. K., Dugasani, S. R., Raju, G. S. R., Yu, J. S. Nanotechnology 2017, 28, 375601. https://doi.org/10.1088/1361-6528/aa7dad.Suche in Google Scholar PubMed

9. Han, X. M., Lin, J., Zhou, H. L., Yu, M., Zhou, Y. H., Pang, M. L. J. Condens. Matter Phys. 2004, 16, 2745. https://doi.org/10.1088/0953-8984/16/15/024.Suche in Google Scholar

10. Liu, N., Mei, L., Liao, L., Fu, J., Yang, D. Science 2019, 9, 15509. https://doi.org/10.1038/s41598-019-51915-1.Suche in Google Scholar PubMed PubMed Central

11. Li, K., Fan, J., Shang, M., Lian, H., Lin, J. J. Mater. Chem. C 2015, 3, 9989. https://doi.org/10.1039/C5TC01993A.Suche in Google Scholar

12. Singh, V., Lakshminarayana, G., Wagh, A., Singh, N. Optik 2020, 207, 164284. https://doi.org/10.1016/j.ijleo.2020.164284.Suche in Google Scholar

13. Rao, C. S., Kumar, K. U., Babu, P., Jayasankar, C. Opt. Mater. 2012, 35, 102. https://doi.org/10.1016/j.optmat.2012.07.023.Suche in Google Scholar

14. Gołvab, S., Solarz, P., Dominiak-Dzik, G., Lukasiewicz, T., Świrkowicz, M., Ryba-Romanowski, W. Appl. Phys. B 2002, 74, 237. https://doi.org/10.1007/s003400200791.Suche in Google Scholar

15. Wang, Z., Yin, Y., Yuan, D. J. Alloys Compd. 2007, 436, 364. https://doi.org/10.1016/j.jallcom.2006.07.050.Suche in Google Scholar

16. Ryabochkina, P. A., Chabushkin, A. N., Kosolapov, A. F., Kurkov, A. S. Quant. Electron. 2015, 45, 102. https://doi.org/10.1070/QE2015v045n02ABEH015414.Suche in Google Scholar

17. Zhang, W. J., Yu, D. C., Zhang, J. P., Qian, Q., Xu, S. H., Yang, Z. M., Zhang, Q. Y. Opt. Mater. Express 2012, 2, 636. https://doi.org/10.1364/OME.2.000636.Suche in Google Scholar

18. Rajesh, D., Dhamodhara Naidu, M., Ratnakaram, Y., Balakrishna, A. Luminescence 2014, 29, 854. https://doi.org/10.1002/bio.2632.Suche in Google Scholar PubMed

19. Priya, R., Pandey, O. P. J. Lumin. 2019, 212, 342. https://doi.org/10.1016/j.jlumin.2019.04.043.Suche in Google Scholar

20. Chiu, Y.-C., Liu, W.-R., Yeh, Y.-T., Jang, S.-M., Chen, T.-M.. J. Electrochem. Soc. 2009, 156, J221. https://doi.org/10.1149/1.3148242.Suche in Google Scholar

Received: 2022-07-11
Accepted: 2022-09-28
Published Online: 2023-08-31
Published in Print: 2023-12-27

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 16.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2022-0314/html
Button zum nach oben scrollen