Home Experimental study of the phase relations of the Fe–Pt–Ho ternary system at 500 °C
Article
Licensed
Unlicensed Requires Authentication

Experimental study of the phase relations of the Fe–Pt–Ho ternary system at 500 °C

  • Ling Peng , YiFan Zhou , Bo Xu , XinQiang Gao ORCID logo EMAIL logo , Zheng-Fei Gu and Cheng-Fu Xu
Published/Copyright: November 17, 2023
Become an author with De Gruyter Brill

Abstract

The phase relations of the Fe–Pt–Ho ternary system at 500 °C have been studied by using X-ray diffraction, scanning electron microscopy and energy dispersive spectroscopy techniques. The Ho3Pt4 phase is stable at 500 °C, and the introduction of Fe does not cause the Ho3Pt4 phase to be decomposed into the two neighbouring phases HoPt and HoPt2. The single phase ranges of α-Fe, Fe3Pt, FePt, FePt3 and Pt in Fe–Pt binary system are from 0 to 10 at.% Pt, 14 to 32 at.% Pt, 33 to 63 at.% Pt, 66 to 78 at.% Pt, and 82 to 100 at.% Pt, respectively. The highest solid solubility of Ho in the α-Fe, Fe3Pt, FePt, FePt3 and (Pt, Fe) phases is less than 1.5 at.% Ho, 2 at.% Ho, 2 at.% Ho, 1.5 at.% Ho and 1.5 at.% Ho, respectively. The isothermal section at 500 °C of the Fe–Pt–Ho ternary alloy phase diagram has been constructed, which consists of 19 single-phase regions, 35 two-phase regions and 17 three-phase regions. No new ternary compounds were found.


Corresponding author: XinQiang Gao, Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341119, P.R. China; and School of Material Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, P.R. China, E-mail:

Funding source: National Natural Science Foundation of China

Award Identifier / Grant number: Unassigned

  1. Research ethics: The local Institutional Review Board deemed the study exempt from review.

  2. Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  3. Competing interests: The authors state no conflict of interest.

  4. Research funding: This work was supported by the National Natural Science Foundation of China (Grant No: 52171054, 52361004) and the Guangxi Natural Science Foundation (No: 2021GXNSFAA220081).

  5. Data availability: The raw data can be obtained on request from the corresponding author.

References

1. Weller, D., Parker, G., Mosendz, O., Champion, E., Stipe, B., Wang, X., Klemmer, T., Ju, G., Ajan, A. A HAMR media technology roadmap to an areal density of 4 Tb/in2. IEEE Trans. Magn. 2014, 50, 1–8. https://doi.org/10.1109/TMAG.2013.2281027.Search in Google Scholar

2. Weller, D., Parker, G., Mosendz, O., Lyberatos, A., Mitin, D., Safonova, N. Y., Albrecht, M. Review article: FePt heat assisted magnetic recording media. J. Vac. Sci. Technol. 2016, B34, 060801. https://doi.org/10.1116/1.4965980.Search in Google Scholar

3. Hono, K., Takahashi, Y. K., Ju, G., Thiele, J.-U., Ajan, A., Yang, X., Ruiz, R., Wan, L. Heat-assisted magnetic recording media materials. MRS Bull. 2018, 43, 93–99. https://doi.org/10.1557/mrs.2018.5.Search in Google Scholar

4. Chiou, J.-Y., Chang, H. W., Chi, C.-C., Hsiao, C.-H., Ouyang, C. L100 FePt films with optimal (001) texture on amorphous SiO2/Si substrates for highdensity perpendicular magnetic recording media. ACS Appl. Nano Mater. 2019, 2, 5663–5673. https://doi.org/10.1021/acsanm.9b01192.Search in Google Scholar

5. Papusoi, C., Le, T., Jubert, P.-O., Oswald, D., Ozdol, B., Tripathy, D., Dorsey, P., Desai, M. L10 FePt films with high TC capping layer for heat assisted magnetic recording (HAMR). J. Magn. Magn. Mater. 2019, 483, 249–265. https://doi.org/10.1016/j.jmmm.2019.03.076.Search in Google Scholar

6. Kief, M., Victora, R. Materials for heat-assisted magnetic recording. MRS Bull. 2018, 43, 87–92. https://doi.org/10.1557/mrs.2018.2.Search in Google Scholar

7. Takahashi, Y., Seki, T. O., Hono, K., Shima, T., Takanashi, K. Microstructure and magnetic properties of FePt and Fe/FePt polycrystalline films with high coercivity. J. Appl. Phys. 2004, 96, 475–481. https://doi.org/10.1063/1.1756688.Search in Google Scholar

8. Wang, H., Mao, W. H., Ma, X. K., Zhang, H. Y., Chen, Y. B., He, Y. J., Jiang, E. Y. Improvement in hard magnetic properties of FePt films by N addition. J. Appl. Phys. 2004, 95, 2564–2568. https://doi.org/10.1063/1.1643785.Search in Google Scholar

9. Rani, P., Thakur, J., Taya, A.,Kashyap, M. K. Effect of tetragonal distortion induced by interstitial C-doping in L10- FeNi. AIP Conf. Proc. 2019, 2115, 030497. https://doi.org/10.1063/1.5113336.Search in Google Scholar

10. Ostanin, S., Razee, S. S. A., Staunton, J. B., Ginatempo, B., Bruno, E. Magnetocrystalline anisotropy and compositional order in Fe 0.5 Pt 0.5: calculations from an ab initio electronic model. J. Appl. Phys. 2003, 93, 453–457. https://doi.org/10.1063/1.1523147.Search in Google Scholar

11. Staunton, J., Ostanin, S., Razee, S. S. A., Gyorffy, B., Szunyogh, L., Ginatempo, B., Bruno, E. Long-range chemical order effects upon the magnetic anisotropy of FePt alloys from an ab initio electronic structure theory. J. Phys.: Condens.Matter 2004, 16, S5623. https://doi.org/10.1088/0953-8984/16/48/019.Search in Google Scholar

12. Sakuma, A. First principle calculation of the magnetocrystalline anisotropy energy of FePt and CoPt ordered alloys. J. Phys. Soc. Jpn. 1994, 63, 3053–3058. https://doi.org/10.1143/jpsj.63.3053.Search in Google Scholar

13. Solovyev, I., Dederichs, P., Mertig, I. Origin of orbital magnetization and magnetocrystalline anisotropy in TX ordered alloys (where T= Fe, Co and X= Pd, Pt). Phys. Rev. B 1995, 52, 13419. https://doi.org/10.1103/PhysRevB.52.13419.Search in Google Scholar

14. Leuty, Z. B., Mayanovic, R. A. Investigations of the magnetic perpendicular exchange bias in L10 FePt/NiO bilayer thin films. MRS Adv. 2018, 3, 2893–2898. https://doi.org/10.1557/adv.2018.421.Search in Google Scholar

15. Abel, F. M., Tzitzios, V., Devlin, E., Alhassan, S., Sellmyer, D. J., Hadjipanayis, G. C. Enhancing the ordering and coercivity of L10 FePt nanostructures with bismuth additives for applications ranging from permanent magnets to catalysts. ACS Appl. Nano Mater. 2019, 2, 3146–3153. https://doi.org/10.1021/acsanm.9b00463.Search in Google Scholar

16. McCallum, A. T., Krone, P., Springer, F., Brombacher, C., Albrecht, M., Dobisz, E., Grobis, M., Weller, D., Hellwig, O. L10 FePt based exchange coupled composite bit patterned films. Appl. Phys. Lett. 2011, 98, 242503. https://doi.org/10.1063/1.3599573.Search in Google Scholar

17. Brombacher, C., Grobis, M., Lee, J., Fidler, J., Eriksson, T., Werner, T., Hellwig, O., Albrecht, M. L10 FePtCu bit patterned media. Nanotechnology 2011, 23, 025301. https://doi.org/10.1088/0957-4484/23/2/025301.Search in Google Scholar PubMed

18. Obeidat, A., Aladerah, B., Qaseer, M.-K. Computational study of magnetic properties of L10 ordered FeNi and FePt binary alloys. J. Magn. Magn. Mater. 2022, 559, 169501. https://doi.org/10.1016/j.jmmm.2022.169501.Search in Google Scholar

19. Aledealat, K., Aladerah, B., Obeidat, A., Gharaibeh, M. First-principles study of electronic structure and magnetic properties of L10-ordered FeNi, FePd, and FePt alloys. Heliyon 2021, 7, e08639. https://doi.org/10.1016/j.heliyon.2021.e08639.Search in Google Scholar PubMed PubMed Central

20. Bronger, W. J. Less-Common Met. 1967, 12, 63–68. https://doi.org/10.1016/0022-5088(67)90071-9.Search in Google Scholar

21. Massalski, T. B., Ed. Binary Alloy Phase Diagrams, 2nd ed.; ASM International, Materials Park: Ohio, 1990; p. 1235.Search in Google Scholar

22. Maccio, D., Rosalbino, F., Saccone, A., Delfino, S. Partial phase diagrams of the Dy-Pt and Ho-Pt systems and electrocatalytic behavior of the DyPt and HoPt phases. J. Alloys Compd. 2005, 391, 60–66. https://doi.org/10.1016/j.jallcom.2004.08.050.Search in Google Scholar

23. Roe, G. J., O’Keefe, T. J. The Fe-Ho binary system. Metall. Mater. Trans. 1970, 1, 2565–2568. https://doi.org/10.1007/bf03038385.Search in Google Scholar

24. Massalski, T. B., Ed. Binary Alloy Phase Diagrams, Vol. 2, 2nd ed.; ASM International, Materials Park: Ohio, 1990; p. 1712.Search in Google Scholar

25. Massalski, T. B. Binary Alloy Phase Diagrams, Vol. 2, 2nd ed.; Materials Information Soc., Materials Park: Ohio, 1990; p. 1755.Search in Google Scholar

26. Zunhong, W., Yanglin, W.,Cong, W., Min, J.,Hongxiao, L., Yuping, R., Gaowu, Q. Redetermination of the Fe-Pt phase diagram by using diffusion couple technique combined with key alloys. Int. J. Mater. Res. 2022, 113, 428–439. https://doi.org/10.1515/ijmr-2021-8496.Search in Google Scholar

27. Klug, H., Alexander, L. X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials; John Wilev and Sons: New York, 1974; p. 168.Search in Google Scholar

28. JCPDS, Version 2.16. JCPDS Database; International Center for Diffraction Data: Newtown Square, PA, 1995.Search in Google Scholar

29. Gao, X. Q., Gu, Z. F., Cheng, G., Xu, C. H. F., Peng, L., Du, Y. S. Phase equilibria in the Fe–Ho–Pt ternary system at 1173 K. J. Phase Equilib. Diffus. 2015, 36, 485–492. https://doi.org/10.1007/s11669-017-0549-4.Search in Google Scholar

30. Xu, C. H. F., Gu, Z. F., Cheng, G., Ren, J., Zhou, H. Y., Lin, Y. Y., Liu, X. M. The thermal stability of R3Pt4 compounds. Metall. Mater. Trans. A 2010, 41, 57. https://doi.org/10.1007/s11661-009-0077-x.Search in Google Scholar

31. Villars, P., Calvert, L. D. Pearson’s Handbook of Crystallographic Data for Intermetallic Phases; ASM International, Materials Park: Ohio, 1991.Search in Google Scholar

32. Chengfu, X., Zhengfei, G., Gang, C., Lei, M., Bo, Z. Isothermal section of the Fe–Pt–Nd phase diagram at 900 °C. J. Alloys Compd. 2006, 424, 128–130. https://doi.org/10.1016/j.jallcom.2005.12.069.Search in Google Scholar

33. Ren, J., Gu, Z., Cheng, G., Zhou, H. Solid-state phase equilibria in the Fe–Pt–Pr ternary system at 1173K. J. Alloys Compd. 2005, 394, 211–214. https://doi.org/10.1016/j.jallcom.2010.05.109.Search in Google Scholar

34. Paienzona, A. J. Less-Common Met. 1977, 53, 133. https://doi.org/10.1007/bf02898267.Search in Google Scholar

Received: 2022-10-22
Accepted: 2023-03-29
Published Online: 2023-11-17
Published in Print: 2023-12-27

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 16.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2022-0437/pdf
Scroll to top button