Startseite Thermal stability of Al3BC3 powders under a nitrogen atmosphere
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Thermal stability of Al3BC3 powders under a nitrogen atmosphere

  • Chao Yu , Guangchao Xing , Lu Ke , Jun Ding , Jinghui Di , Hongxi Zhu , Zhoufu Wang , Chengji Deng EMAIL logo und Puliang Yu EMAIL logo
Veröffentlicht/Copyright: 21. Juni 2023
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The thermal stability of Al3BC3 powders under nitrogen was studied. AlN–BN composites were generated during the nitridation of Al3BC3. Possible reaction mechanisms responsible for the thermal decomposition of Al3BC3 powders were discussed. The relatively weaker Al–C bonds in Al3BC3 promoted the fast diffusion of Al and the generation of AlN–BN layers inhibited the deeper nitridation, thus the thermal decomposition was governed by surface reaction. The formed nitrides resulted in a volume change and cracked the resulting layers as the reactions progressed, facilitating the diffusion of N2 and enhanced the decomposition of Al3BC3. The intensive reaction involving Al3BC3 and N2 could be attributed to the prolonged reaction time at high temperature and continued escape of vaporized Al and B. This result contributes to a theoretical basis of high-temperature application of Al3BC3 under nitrogen.


Corresponding authors: Chengji Deng, The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan, P.R. China, E-mail: ; and Puliang Yu, The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan, P.R. China; and Key Laboratory of Metallurgical Equipment and Control Technology of Ministry of Education, Wuhan University of Science and Technology, Wuhan, P.R. China, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: The authors acknowledge the financial support from the Key Research and Development Program of Hubei Province (2021BAD002), the National Natural Science Foundation of China (U21A2057), and Youth Fund Project for the State Key Laboratory of Refractories and Metallurgy (2018QN15).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Viala, J. C., Bouix, J., Gonzalez, G., Esnouf, C. J. Mater. Sci. 1997, 32, 4559–4573. https://doi.org/10.1023/A:1018625402103.Suche in Google Scholar

2. Ren, D. L., Deng, Q. H., Wang, J., Li, Y. B., Li, M., Ran, S. L., Du, S. Y., Huang, Q. J. Eur. Ceram. Soc. 2017, 37, 4524–4531. https://doi.org/10.1016/j.jeurceramsoc.2017.07.010.Suche in Google Scholar

3. Gao, Y. F., Huang, Z. H., Fang, M. H., Liu, Y. G., Huang, S. F., Xin, O. Y. Powder Technol. 2012, 226, 269–273. https://doi.org/10.1016/j.powtec.2012.05.001.Suche in Google Scholar

4. Zhao, Y. F., Qian, Z., Liu, X. F. Mater. Des. 2016, 93, 283–290. https://doi.org/10.1016/j.matdes.2015.12.104.Suche in Google Scholar

5. Zhang, W., Yamashita, S., Kita, H. Adv. Appl. Ceram. 2019, 118, 222–239. https://doi.org/10.1080/17436753.2019.1574285.Suche in Google Scholar

6. Wang, J. Y., Zhou, Y. C., Liao, T., Lin, Z. J. Appl. Phys. Lett. 2006, 89, 021917. https://doi.org/10.1063/1.2220549.Suche in Google Scholar

7. Wang, J. Y., Zhou, Y. C., Lin, Z. J., Liao, T. J. Solid State Chem. 2006, 179, 2739–2743. https://doi.org/10.1016/j.jssc.2006.05.016.Suche in Google Scholar

8. Xiang, H. M., Li, F. Z., Li, J. J., Wang, J. M., Wang, X. H., Wang, J. Y., Zhou, Y. C. J. Appl. Phys. 2011, 110, 113504. https://doi.org/10.1063/1.3665197.Suche in Google Scholar

9. Lee, S. H., Kim, H. D., Choi, S. C., Nishimura, T. Y., Tanaka, H. H. J. Eur. Ceram. Soc. 2010, 30, 1015–1020. https://doi.org/10.1016/j.jeurceramsoc.2009.09.027.Suche in Google Scholar

10. Lee, S. H., Lee, J. S., Tanaka, H., Choi, S. C. J. Am. Ceram. Soc. 2009, 92, 2831–2837. https://doi.org/10.1111/j.1551-2916.2009.03292.x.Suche in Google Scholar

11. Hillebrecht, H., Meyer, F. D. Angew. Chem., Int. Ed. Engl. 1996, 35, 2499–2500. https://doi.org/10.1002/anie.199624991.Suche in Google Scholar

12. Solozhenko, V., Meyer, F., Hillebrecht, H. J. Solid State Chem. 2000, 154, 254–256. https://doi.org/10.1006/jssc.2000.8845.Suche in Google Scholar

13. Hajas, D. E., To Baben, M., Hallstedt, B., Iskandar, R., Mayer, J., Schneider, J. M. Surf. Coat. Technol. 2011, 206, 591–598. https://doi.org/10.1016/j.surfcoat.2011.03.086.Suche in Google Scholar

14. Zhang, Y., Dai, Z., Niu, D., Liang, B., Li, Q., Li, Y. Int. J. Mater. Res. 2021, 112, 852–859. https://doi.org/10.1080/17436753.2018.1564414.Suche in Google Scholar

15. Inoue, Z., Tanaka, H., Inomata, Y. J. Mater. Sci. 1980, 15, 3036–3040. https://doi.org/10.1007/BF00550372.Suche in Google Scholar

16. Wang, T., Yamaguchi, A. J. Ceram. Soc. Jpn. 2000, 108, 375–380. https://doi.org/10.2109/jcersj.108.1256_375.Suche in Google Scholar

17. Dong, B., Deng, C. J., Di, J. H., Ding, J., Zhu, Q. Y., Liu, H., Zhu, H. X., Yu, C. J. Mater. Res. Technol. 2023, 23, 670–679. https://doi.org/10.1016/j.jmrt.2023.01.042.Suche in Google Scholar

18. Wang, X., Deng, C. J., Di, J. H., Xing, G. C., Ding, J., Wang, Z. F., Zhu, H. X., Yu, C. J. Am. Ceram. Soc. 2023, 106, 3749–3764. https://doi.org/10.1111/jace.19023.Suche in Google Scholar

19. Lee, S. H., Tanaka, H. J. Am. Ceram. Soc. 2009, 92, 2172–2174. https://doi.org/10.1111/j.1551-2916.2009.03171.x.Suche in Google Scholar

20. Li, F. Z., Zhou, Y. C., He, L. F., Liu, B., Wang, J. Y. J. Am. Ceram. Soc. 2008, 91, 2343–2348. https://doi.org/10.1111/j.1551-2916.2008.02437.x.Suche in Google Scholar

21. Zhang, G. J., Yang, J. F., Ando, M., Ohji, T. J. Am. Ceram. Soc. 2004, 85, 2938–2944. https://doi.org/10.1111/j.1151-2916.2002.tb00559.x.Suche in Google Scholar

22. Gostariani, R., Bagherpour, E., Rifai, M., Ebrahimi, R., Miyamoto, H. J. Alloys Compd. 2018, 768, 329–339. https://doi.org/10.1016/j.jallcom.2018.07.256.Suche in Google Scholar

23. Li, Y., Zhang, C., Luo, X. G., Liang, Y. L., Wuu, D. S., Tin, C. C., Lu, X., He, K. Y., Wan, L. Y., Feng, Z. C. Appl. Surf. Sci. 2018, 458, 972–977. https://doi.org/10.1016/j.apsusc.2018.07.138.Suche in Google Scholar

24. Xing, G. C., Deng, C. J., Ding, J., Zhu, H. X., Yu, C. Ceram. Int. 2020, 46, 4959–4967. https://doi.org/10.1016/j.ceramint.2019.10.234.Suche in Google Scholar

25. Wen, G., Zhang, T., Huang, X. X., Zhong, B., Zhang, X. D., Yu, H. M. J. Scr. Mater. 2010, 62, 25–28. https://doi.org/10.1016/j.scriptamat.2009.09.018.Suche in Google Scholar

26. Oeckler, O., Jardin, C., Mattausch, H., Simon, A., Halet, J. F., Saillard, J. Y., Bauer, J. Inorg. Chem. 2001, 627, 1389–1394. https://doi.org/10.1002/1521-3749(200106)627:6<1389::AID-ZAAC1389>3.0.CO;2-G.10.1002/1521-3749(200106)627:6<1389::AID-ZAAC1389>3.0.CO;2-GSuche in Google Scholar

27. Kaupp, M., Danovich, D., Shaik, S. Coord. Chem. Rev. 2017, 344, 355–362. https://doi.org/10.1016/j.ccr.2017.03.002.Suche in Google Scholar

28. Wang, Q., Ge, Y. Y., Kuang, J. L., Jiang, P., Liu, W. X., Cao, W. B. J. Alloys Compd. 2017, 696, 220–225. https://doi.org/10.1016/j.jallcom.2016.11.252.Suche in Google Scholar

29. Zheng, Y. X., Deng, C. J., Ding, J., Zhu, H. X., Yu, C. Mater. Charact. 2020, 161, 110159. https://doi.org/10.1016/j.matchar.2020.110159.Suche in Google Scholar

30. Mashhadi, M., Mearaji, F., Tamizifar, M. Int. J. Refract. Met. Hard Mater. 2014, 46, 181–187. https://doi.org/10.1016/j.ijrmhm.2014.06.011.Suche in Google Scholar

31. Xing, G. C., Deng, C. J., Di, J. H., Ding, J., Zhu, H. X., Yu, C. Ceram. Int. 2022, 48, 14424–14431. https://doi.org/10.1016/j.ceramint.2022.01.335.Suche in Google Scholar

32. Huang, J. T., Zhang, S. W., Huang, Z. H., Fang, M. H., Liu, Y. G., Chen, K. Ceram. Int. 2014, 40, 11063–11070. https://doi.org/10.1016/j.ceramint.2014.03.122.Suche in Google Scholar

33. Wu, X. X., Deng, C. J., Di, J. H., Ding, J., Zhu, H. X., Yu, C. J. Eur. Ceram. Soc. 2022, 42, 3634–3643. https://doi.org/10.1016/j.jeurceramsoc.2022.02.058.Suche in Google Scholar

34. Burton, W. K., Cabrera, N., Frank, F. C. Philos. Trans. R. Soc., A 1951, 243, 299–358. https://doi.org/10.1098/rsta.1951.0006.Suche in Google Scholar

35. Lewis, B. J. Cryst. Growth 1974, 21, 29–39. https://doi.org/10.1016/0022-0248(74)90146-8.Suche in Google Scholar

36. Yim, W. M., Paff, R. J. J. Appl. Phys. 1974, 45, 1456–1457. https://doi.org/10.1063/1.1663432.Suche in Google Scholar

37. Guo, R., Luo, H., Zhai, D., Xiao, Z. D., Xie, H. R., Liu, Y., Zhou, X. F., Zhang, D. Chem. Eng. Commun. 2022, 437, 135497. https://doi.org/10.1016/j.cej.2022.135497.Suche in Google Scholar

38. Liang, B. Y., Wang, J., Zhang, Z. Y., Zhang, J., Zhang, J. P., Cressey, E. L., Wang, Z. Fundam. Res. 2022, 2, 688–696. https://doi.org/10.1016/j.fmre.2022.04.008.Suche in Google Scholar

39. Xing, G. C., Wang, H., Deng, C. J., Di, J. H., Ding, J., Ma, B. Y., Wang, Z. F., Zhu, H. X., Yu, C. Ceram. Int. 2022, 48, 33151–33159. https://doi.org/10.1016/j.ceramint.2022.07.252.Suche in Google Scholar

40. Yu, C., Zheng, Y. X., Xing, G. C., Ding, J., Zhu, H. X., Wang, Z. F., Deng, C. J., Di, J. H. J. Am. Ceram. Soc. 2022, 105, 7111–7121. https://doi.org/10.1111/jace.18709.Suche in Google Scholar

Received: 2022-07-31
Accepted: 2023-01-27
Published Online: 2023-06-21
Published in Print: 2023-12-27

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 16.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2022-0347/pdf
Button zum nach oben scrollen