Abstract
The thermal stability of Al3BC3 powders under nitrogen was studied. AlN–BN composites were generated during the nitridation of Al3BC3. Possible reaction mechanisms responsible for the thermal decomposition of Al3BC3 powders were discussed. The relatively weaker Al–C bonds in Al3BC3 promoted the fast diffusion of Al and the generation of AlN–BN layers inhibited the deeper nitridation, thus the thermal decomposition was governed by surface reaction. The formed nitrides resulted in a volume change and cracked the resulting layers as the reactions progressed, facilitating the diffusion of N2 and enhanced the decomposition of Al3BC3. The intensive reaction involving Al3BC3 and N2 could be attributed to the prolonged reaction time at high temperature and continued escape of vaporized Al and B. This result contributes to a theoretical basis of high-temperature application of Al3BC3 under nitrogen.
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: The authors acknowledge the financial support from the Key Research and Development Program of Hubei Province (2021BAD002), the National Natural Science Foundation of China (U21A2057), and Youth Fund Project for the State Key Laboratory of Refractories and Metallurgy (2018QN15).
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Viala, J. C., Bouix, J., Gonzalez, G., Esnouf, C. J. Mater. Sci. 1997, 32, 4559–4573. https://doi.org/10.1023/A:1018625402103.Suche in Google Scholar
2. Ren, D. L., Deng, Q. H., Wang, J., Li, Y. B., Li, M., Ran, S. L., Du, S. Y., Huang, Q. J. Eur. Ceram. Soc. 2017, 37, 4524–4531. https://doi.org/10.1016/j.jeurceramsoc.2017.07.010.Suche in Google Scholar
3. Gao, Y. F., Huang, Z. H., Fang, M. H., Liu, Y. G., Huang, S. F., Xin, O. Y. Powder Technol. 2012, 226, 269–273. https://doi.org/10.1016/j.powtec.2012.05.001.Suche in Google Scholar
4. Zhao, Y. F., Qian, Z., Liu, X. F. Mater. Des. 2016, 93, 283–290. https://doi.org/10.1016/j.matdes.2015.12.104.Suche in Google Scholar
5. Zhang, W., Yamashita, S., Kita, H. Adv. Appl. Ceram. 2019, 118, 222–239. https://doi.org/10.1080/17436753.2019.1574285.Suche in Google Scholar
6. Wang, J. Y., Zhou, Y. C., Liao, T., Lin, Z. J. Appl. Phys. Lett. 2006, 89, 021917. https://doi.org/10.1063/1.2220549.Suche in Google Scholar
7. Wang, J. Y., Zhou, Y. C., Lin, Z. J., Liao, T. J. Solid State Chem. 2006, 179, 2739–2743. https://doi.org/10.1016/j.jssc.2006.05.016.Suche in Google Scholar
8. Xiang, H. M., Li, F. Z., Li, J. J., Wang, J. M., Wang, X. H., Wang, J. Y., Zhou, Y. C. J. Appl. Phys. 2011, 110, 113504. https://doi.org/10.1063/1.3665197.Suche in Google Scholar
9. Lee, S. H., Kim, H. D., Choi, S. C., Nishimura, T. Y., Tanaka, H. H. J. Eur. Ceram. Soc. 2010, 30, 1015–1020. https://doi.org/10.1016/j.jeurceramsoc.2009.09.027.Suche in Google Scholar
10. Lee, S. H., Lee, J. S., Tanaka, H., Choi, S. C. J. Am. Ceram. Soc. 2009, 92, 2831–2837. https://doi.org/10.1111/j.1551-2916.2009.03292.x.Suche in Google Scholar
11. Hillebrecht, H., Meyer, F. D. Angew. Chem., Int. Ed. Engl. 1996, 35, 2499–2500. https://doi.org/10.1002/anie.199624991.Suche in Google Scholar
12. Solozhenko, V., Meyer, F., Hillebrecht, H. J. Solid State Chem. 2000, 154, 254–256. https://doi.org/10.1006/jssc.2000.8845.Suche in Google Scholar
13. Hajas, D. E., To Baben, M., Hallstedt, B., Iskandar, R., Mayer, J., Schneider, J. M. Surf. Coat. Technol. 2011, 206, 591–598. https://doi.org/10.1016/j.surfcoat.2011.03.086.Suche in Google Scholar
14. Zhang, Y., Dai, Z., Niu, D., Liang, B., Li, Q., Li, Y. Int. J. Mater. Res. 2021, 112, 852–859. https://doi.org/10.1080/17436753.2018.1564414.Suche in Google Scholar
15. Inoue, Z., Tanaka, H., Inomata, Y. J. Mater. Sci. 1980, 15, 3036–3040. https://doi.org/10.1007/BF00550372.Suche in Google Scholar
16. Wang, T., Yamaguchi, A. J. Ceram. Soc. Jpn. 2000, 108, 375–380. https://doi.org/10.2109/jcersj.108.1256_375.Suche in Google Scholar
17. Dong, B., Deng, C. J., Di, J. H., Ding, J., Zhu, Q. Y., Liu, H., Zhu, H. X., Yu, C. J. Mater. Res. Technol. 2023, 23, 670–679. https://doi.org/10.1016/j.jmrt.2023.01.042.Suche in Google Scholar
18. Wang, X., Deng, C. J., Di, J. H., Xing, G. C., Ding, J., Wang, Z. F., Zhu, H. X., Yu, C. J. Am. Ceram. Soc. 2023, 106, 3749–3764. https://doi.org/10.1111/jace.19023.Suche in Google Scholar
19. Lee, S. H., Tanaka, H. J. Am. Ceram. Soc. 2009, 92, 2172–2174. https://doi.org/10.1111/j.1551-2916.2009.03171.x.Suche in Google Scholar
20. Li, F. Z., Zhou, Y. C., He, L. F., Liu, B., Wang, J. Y. J. Am. Ceram. Soc. 2008, 91, 2343–2348. https://doi.org/10.1111/j.1551-2916.2008.02437.x.Suche in Google Scholar
21. Zhang, G. J., Yang, J. F., Ando, M., Ohji, T. J. Am. Ceram. Soc. 2004, 85, 2938–2944. https://doi.org/10.1111/j.1151-2916.2002.tb00559.x.Suche in Google Scholar
22. Gostariani, R., Bagherpour, E., Rifai, M., Ebrahimi, R., Miyamoto, H. J. Alloys Compd. 2018, 768, 329–339. https://doi.org/10.1016/j.jallcom.2018.07.256.Suche in Google Scholar
23. Li, Y., Zhang, C., Luo, X. G., Liang, Y. L., Wuu, D. S., Tin, C. C., Lu, X., He, K. Y., Wan, L. Y., Feng, Z. C. Appl. Surf. Sci. 2018, 458, 972–977. https://doi.org/10.1016/j.apsusc.2018.07.138.Suche in Google Scholar
24. Xing, G. C., Deng, C. J., Ding, J., Zhu, H. X., Yu, C. Ceram. Int. 2020, 46, 4959–4967. https://doi.org/10.1016/j.ceramint.2019.10.234.Suche in Google Scholar
25. Wen, G., Zhang, T., Huang, X. X., Zhong, B., Zhang, X. D., Yu, H. M. J. Scr. Mater. 2010, 62, 25–28. https://doi.org/10.1016/j.scriptamat.2009.09.018.Suche in Google Scholar
26. Oeckler, O., Jardin, C., Mattausch, H., Simon, A., Halet, J. F., Saillard, J. Y., Bauer, J. Inorg. Chem. 2001, 627, 1389–1394. https://doi.org/10.1002/1521-3749(200106)627:6<1389::AID-ZAAC1389>3.0.CO;2-G.10.1002/1521-3749(200106)627:6<1389::AID-ZAAC1389>3.0.CO;2-GSuche in Google Scholar
27. Kaupp, M., Danovich, D., Shaik, S. Coord. Chem. Rev. 2017, 344, 355–362. https://doi.org/10.1016/j.ccr.2017.03.002.Suche in Google Scholar
28. Wang, Q., Ge, Y. Y., Kuang, J. L., Jiang, P., Liu, W. X., Cao, W. B. J. Alloys Compd. 2017, 696, 220–225. https://doi.org/10.1016/j.jallcom.2016.11.252.Suche in Google Scholar
29. Zheng, Y. X., Deng, C. J., Ding, J., Zhu, H. X., Yu, C. Mater. Charact. 2020, 161, 110159. https://doi.org/10.1016/j.matchar.2020.110159.Suche in Google Scholar
30. Mashhadi, M., Mearaji, F., Tamizifar, M. Int. J. Refract. Met. Hard Mater. 2014, 46, 181–187. https://doi.org/10.1016/j.ijrmhm.2014.06.011.Suche in Google Scholar
31. Xing, G. C., Deng, C. J., Di, J. H., Ding, J., Zhu, H. X., Yu, C. Ceram. Int. 2022, 48, 14424–14431. https://doi.org/10.1016/j.ceramint.2022.01.335.Suche in Google Scholar
32. Huang, J. T., Zhang, S. W., Huang, Z. H., Fang, M. H., Liu, Y. G., Chen, K. Ceram. Int. 2014, 40, 11063–11070. https://doi.org/10.1016/j.ceramint.2014.03.122.Suche in Google Scholar
33. Wu, X. X., Deng, C. J., Di, J. H., Ding, J., Zhu, H. X., Yu, C. J. Eur. Ceram. Soc. 2022, 42, 3634–3643. https://doi.org/10.1016/j.jeurceramsoc.2022.02.058.Suche in Google Scholar
34. Burton, W. K., Cabrera, N., Frank, F. C. Philos. Trans. R. Soc., A 1951, 243, 299–358. https://doi.org/10.1098/rsta.1951.0006.Suche in Google Scholar
35. Lewis, B. J. Cryst. Growth 1974, 21, 29–39. https://doi.org/10.1016/0022-0248(74)90146-8.Suche in Google Scholar
36. Yim, W. M., Paff, R. J. J. Appl. Phys. 1974, 45, 1456–1457. https://doi.org/10.1063/1.1663432.Suche in Google Scholar
37. Guo, R., Luo, H., Zhai, D., Xiao, Z. D., Xie, H. R., Liu, Y., Zhou, X. F., Zhang, D. Chem. Eng. Commun. 2022, 437, 135497. https://doi.org/10.1016/j.cej.2022.135497.Suche in Google Scholar
38. Liang, B. Y., Wang, J., Zhang, Z. Y., Zhang, J., Zhang, J. P., Cressey, E. L., Wang, Z. Fundam. Res. 2022, 2, 688–696. https://doi.org/10.1016/j.fmre.2022.04.008.Suche in Google Scholar
39. Xing, G. C., Wang, H., Deng, C. J., Di, J. H., Ding, J., Ma, B. Y., Wang, Z. F., Zhu, H. X., Yu, C. Ceram. Int. 2022, 48, 33151–33159. https://doi.org/10.1016/j.ceramint.2022.07.252.Suche in Google Scholar
40. Yu, C., Zheng, Y. X., Xing, G. C., Ding, J., Zhu, H. X., Wang, Z. F., Deng, C. J., Di, J. H. J. Am. Ceram. Soc. 2022, 105, 7111–7121. https://doi.org/10.1111/jace.18709.Suche in Google Scholar
© 2023 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Original Papers
- Nanocrystalline PbS thin film produced by alkaline chemical bath deposition: effect of inhibitor levels and temperature on the physicochemical properties
- Effect of laser power on microstructure and tribological behavior of laser clad NiCr coating
- Mechanical characterization and evaluation of pitting corrosion resistance of a superferritic stainless steel model alloy 25Cr–6Mo–5Ni
- Factors dictating the extent of low elongation in high sulfur-containing bainitic steels
- Effect of process parameters on mechanical properties and wettability of polylactic acid by fused filament fabrication process
- Critical systematic investigation of the Cd–Ce system: phase stability and Gibbs energies of formation and equilibria via thermodynamic description
- Experimental study of the phase relations of the Fe–Pt–Ho ternary system at 500 °C
- Ultraviolet-B radiation from Gd (III) doped hardystonite
- Photoluminescence features of trivalent holmium doped Ca2La8(SiO4)6O2 phosphors
- Thermal stability of Al3BC3 powders under a nitrogen atmosphere
- News
- DGM – Deutsche Gesellschaft für Materialkunde
Artikel in diesem Heft
- Frontmatter
- Original Papers
- Nanocrystalline PbS thin film produced by alkaline chemical bath deposition: effect of inhibitor levels and temperature on the physicochemical properties
- Effect of laser power on microstructure and tribological behavior of laser clad NiCr coating
- Mechanical characterization and evaluation of pitting corrosion resistance of a superferritic stainless steel model alloy 25Cr–6Mo–5Ni
- Factors dictating the extent of low elongation in high sulfur-containing bainitic steels
- Effect of process parameters on mechanical properties and wettability of polylactic acid by fused filament fabrication process
- Critical systematic investigation of the Cd–Ce system: phase stability and Gibbs energies of formation and equilibria via thermodynamic description
- Experimental study of the phase relations of the Fe–Pt–Ho ternary system at 500 °C
- Ultraviolet-B radiation from Gd (III) doped hardystonite
- Photoluminescence features of trivalent holmium doped Ca2La8(SiO4)6O2 phosphors
- Thermal stability of Al3BC3 powders under a nitrogen atmosphere
- News
- DGM – Deutsche Gesellschaft für Materialkunde