Home Thermal stability of Al3BC3 powders under a nitrogen atmosphere
Article
Licensed
Unlicensed Requires Authentication

Thermal stability of Al3BC3 powders under a nitrogen atmosphere

  • Chao Yu , Guangchao Xing , Lu Ke , Jun Ding , Jinghui Di , Hongxi Zhu , Zhoufu Wang , Chengji Deng EMAIL logo and Puliang Yu EMAIL logo
Published/Copyright: June 21, 2023
Become an author with De Gruyter Brill

Abstract

The thermal stability of Al3BC3 powders under nitrogen was studied. AlN–BN composites were generated during the nitridation of Al3BC3. Possible reaction mechanisms responsible for the thermal decomposition of Al3BC3 powders were discussed. The relatively weaker Al–C bonds in Al3BC3 promoted the fast diffusion of Al and the generation of AlN–BN layers inhibited the deeper nitridation, thus the thermal decomposition was governed by surface reaction. The formed nitrides resulted in a volume change and cracked the resulting layers as the reactions progressed, facilitating the diffusion of N2 and enhanced the decomposition of Al3BC3. The intensive reaction involving Al3BC3 and N2 could be attributed to the prolonged reaction time at high temperature and continued escape of vaporized Al and B. This result contributes to a theoretical basis of high-temperature application of Al3BC3 under nitrogen.


Corresponding authors: Chengji Deng, The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan, P.R. China, E-mail: ; and Puliang Yu, The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan, P.R. China; and Key Laboratory of Metallurgical Equipment and Control Technology of Ministry of Education, Wuhan University of Science and Technology, Wuhan, P.R. China, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: The authors acknowledge the financial support from the Key Research and Development Program of Hubei Province (2021BAD002), the National Natural Science Foundation of China (U21A2057), and Youth Fund Project for the State Key Laboratory of Refractories and Metallurgy (2018QN15).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Viala, J. C., Bouix, J., Gonzalez, G., Esnouf, C. J. Mater. Sci. 1997, 32, 4559–4573. https://doi.org/10.1023/A:1018625402103.Search in Google Scholar

2. Ren, D. L., Deng, Q. H., Wang, J., Li, Y. B., Li, M., Ran, S. L., Du, S. Y., Huang, Q. J. Eur. Ceram. Soc. 2017, 37, 4524–4531. https://doi.org/10.1016/j.jeurceramsoc.2017.07.010.Search in Google Scholar

3. Gao, Y. F., Huang, Z. H., Fang, M. H., Liu, Y. G., Huang, S. F., Xin, O. Y. Powder Technol. 2012, 226, 269–273. https://doi.org/10.1016/j.powtec.2012.05.001.Search in Google Scholar

4. Zhao, Y. F., Qian, Z., Liu, X. F. Mater. Des. 2016, 93, 283–290. https://doi.org/10.1016/j.matdes.2015.12.104.Search in Google Scholar

5. Zhang, W., Yamashita, S., Kita, H. Adv. Appl. Ceram. 2019, 118, 222–239. https://doi.org/10.1080/17436753.2019.1574285.Search in Google Scholar

6. Wang, J. Y., Zhou, Y. C., Liao, T., Lin, Z. J. Appl. Phys. Lett. 2006, 89, 021917. https://doi.org/10.1063/1.2220549.Search in Google Scholar

7. Wang, J. Y., Zhou, Y. C., Lin, Z. J., Liao, T. J. Solid State Chem. 2006, 179, 2739–2743. https://doi.org/10.1016/j.jssc.2006.05.016.Search in Google Scholar

8. Xiang, H. M., Li, F. Z., Li, J. J., Wang, J. M., Wang, X. H., Wang, J. Y., Zhou, Y. C. J. Appl. Phys. 2011, 110, 113504. https://doi.org/10.1063/1.3665197.Search in Google Scholar

9. Lee, S. H., Kim, H. D., Choi, S. C., Nishimura, T. Y., Tanaka, H. H. J. Eur. Ceram. Soc. 2010, 30, 1015–1020. https://doi.org/10.1016/j.jeurceramsoc.2009.09.027.Search in Google Scholar

10. Lee, S. H., Lee, J. S., Tanaka, H., Choi, S. C. J. Am. Ceram. Soc. 2009, 92, 2831–2837. https://doi.org/10.1111/j.1551-2916.2009.03292.x.Search in Google Scholar

11. Hillebrecht, H., Meyer, F. D. Angew. Chem., Int. Ed. Engl. 1996, 35, 2499–2500. https://doi.org/10.1002/anie.199624991.Search in Google Scholar

12. Solozhenko, V., Meyer, F., Hillebrecht, H. J. Solid State Chem. 2000, 154, 254–256. https://doi.org/10.1006/jssc.2000.8845.Search in Google Scholar

13. Hajas, D. E., To Baben, M., Hallstedt, B., Iskandar, R., Mayer, J., Schneider, J. M. Surf. Coat. Technol. 2011, 206, 591–598. https://doi.org/10.1016/j.surfcoat.2011.03.086.Search in Google Scholar

14. Zhang, Y., Dai, Z., Niu, D., Liang, B., Li, Q., Li, Y. Int. J. Mater. Res. 2021, 112, 852–859. https://doi.org/10.1080/17436753.2018.1564414.Search in Google Scholar

15. Inoue, Z., Tanaka, H., Inomata, Y. J. Mater. Sci. 1980, 15, 3036–3040. https://doi.org/10.1007/BF00550372.Search in Google Scholar

16. Wang, T., Yamaguchi, A. J. Ceram. Soc. Jpn. 2000, 108, 375–380. https://doi.org/10.2109/jcersj.108.1256_375.Search in Google Scholar

17. Dong, B., Deng, C. J., Di, J. H., Ding, J., Zhu, Q. Y., Liu, H., Zhu, H. X., Yu, C. J. Mater. Res. Technol. 2023, 23, 670–679. https://doi.org/10.1016/j.jmrt.2023.01.042.Search in Google Scholar

18. Wang, X., Deng, C. J., Di, J. H., Xing, G. C., Ding, J., Wang, Z. F., Zhu, H. X., Yu, C. J. Am. Ceram. Soc. 2023, 106, 3749–3764. https://doi.org/10.1111/jace.19023.Search in Google Scholar

19. Lee, S. H., Tanaka, H. J. Am. Ceram. Soc. 2009, 92, 2172–2174. https://doi.org/10.1111/j.1551-2916.2009.03171.x.Search in Google Scholar

20. Li, F. Z., Zhou, Y. C., He, L. F., Liu, B., Wang, J. Y. J. Am. Ceram. Soc. 2008, 91, 2343–2348. https://doi.org/10.1111/j.1551-2916.2008.02437.x.Search in Google Scholar

21. Zhang, G. J., Yang, J. F., Ando, M., Ohji, T. J. Am. Ceram. Soc. 2004, 85, 2938–2944. https://doi.org/10.1111/j.1151-2916.2002.tb00559.x.Search in Google Scholar

22. Gostariani, R., Bagherpour, E., Rifai, M., Ebrahimi, R., Miyamoto, H. J. Alloys Compd. 2018, 768, 329–339. https://doi.org/10.1016/j.jallcom.2018.07.256.Search in Google Scholar

23. Li, Y., Zhang, C., Luo, X. G., Liang, Y. L., Wuu, D. S., Tin, C. C., Lu, X., He, K. Y., Wan, L. Y., Feng, Z. C. Appl. Surf. Sci. 2018, 458, 972–977. https://doi.org/10.1016/j.apsusc.2018.07.138.Search in Google Scholar

24. Xing, G. C., Deng, C. J., Ding, J., Zhu, H. X., Yu, C. Ceram. Int. 2020, 46, 4959–4967. https://doi.org/10.1016/j.ceramint.2019.10.234.Search in Google Scholar

25. Wen, G., Zhang, T., Huang, X. X., Zhong, B., Zhang, X. D., Yu, H. M. J. Scr. Mater. 2010, 62, 25–28. https://doi.org/10.1016/j.scriptamat.2009.09.018.Search in Google Scholar

26. Oeckler, O., Jardin, C., Mattausch, H., Simon, A., Halet, J. F., Saillard, J. Y., Bauer, J. Inorg. Chem. 2001, 627, 1389–1394. https://doi.org/10.1002/1521-3749(200106)627:6<1389::AID-ZAAC1389>3.0.CO;2-G.10.1002/1521-3749(200106)627:6<1389::AID-ZAAC1389>3.0.CO;2-GSearch in Google Scholar

27. Kaupp, M., Danovich, D., Shaik, S. Coord. Chem. Rev. 2017, 344, 355–362. https://doi.org/10.1016/j.ccr.2017.03.002.Search in Google Scholar

28. Wang, Q., Ge, Y. Y., Kuang, J. L., Jiang, P., Liu, W. X., Cao, W. B. J. Alloys Compd. 2017, 696, 220–225. https://doi.org/10.1016/j.jallcom.2016.11.252.Search in Google Scholar

29. Zheng, Y. X., Deng, C. J., Ding, J., Zhu, H. X., Yu, C. Mater. Charact. 2020, 161, 110159. https://doi.org/10.1016/j.matchar.2020.110159.Search in Google Scholar

30. Mashhadi, M., Mearaji, F., Tamizifar, M. Int. J. Refract. Met. Hard Mater. 2014, 46, 181–187. https://doi.org/10.1016/j.ijrmhm.2014.06.011.Search in Google Scholar

31. Xing, G. C., Deng, C. J., Di, J. H., Ding, J., Zhu, H. X., Yu, C. Ceram. Int. 2022, 48, 14424–14431. https://doi.org/10.1016/j.ceramint.2022.01.335.Search in Google Scholar

32. Huang, J. T., Zhang, S. W., Huang, Z. H., Fang, M. H., Liu, Y. G., Chen, K. Ceram. Int. 2014, 40, 11063–11070. https://doi.org/10.1016/j.ceramint.2014.03.122.Search in Google Scholar

33. Wu, X. X., Deng, C. J., Di, J. H., Ding, J., Zhu, H. X., Yu, C. J. Eur. Ceram. Soc. 2022, 42, 3634–3643. https://doi.org/10.1016/j.jeurceramsoc.2022.02.058.Search in Google Scholar

34. Burton, W. K., Cabrera, N., Frank, F. C. Philos. Trans. R. Soc., A 1951, 243, 299–358. https://doi.org/10.1098/rsta.1951.0006.Search in Google Scholar

35. Lewis, B. J. Cryst. Growth 1974, 21, 29–39. https://doi.org/10.1016/0022-0248(74)90146-8.Search in Google Scholar

36. Yim, W. M., Paff, R. J. J. Appl. Phys. 1974, 45, 1456–1457. https://doi.org/10.1063/1.1663432.Search in Google Scholar

37. Guo, R., Luo, H., Zhai, D., Xiao, Z. D., Xie, H. R., Liu, Y., Zhou, X. F., Zhang, D. Chem. Eng. Commun. 2022, 437, 135497. https://doi.org/10.1016/j.cej.2022.135497.Search in Google Scholar

38. Liang, B. Y., Wang, J., Zhang, Z. Y., Zhang, J., Zhang, J. P., Cressey, E. L., Wang, Z. Fundam. Res. 2022, 2, 688–696. https://doi.org/10.1016/j.fmre.2022.04.008.Search in Google Scholar

39. Xing, G. C., Wang, H., Deng, C. J., Di, J. H., Ding, J., Ma, B. Y., Wang, Z. F., Zhu, H. X., Yu, C. Ceram. Int. 2022, 48, 33151–33159. https://doi.org/10.1016/j.ceramint.2022.07.252.Search in Google Scholar

40. Yu, C., Zheng, Y. X., Xing, G. C., Ding, J., Zhu, H. X., Wang, Z. F., Deng, C. J., Di, J. H. J. Am. Ceram. Soc. 2022, 105, 7111–7121. https://doi.org/10.1111/jace.18709.Search in Google Scholar

Received: 2022-07-31
Accepted: 2023-01-27
Published Online: 2023-06-21
Published in Print: 2023-12-27

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 16.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2022-0347/pdf
Scroll to top button