Abstract
Nanomaterials have enabled extraordinary technical breakthroughs relative to bulk materials because of their unique properties. In this study, we have synthesized CeO2 and Ce1−xFe x O2 (x = 0.02, 0.04 and 0.06 w/w) nanoparticles by the sol–gel method using acacia concinna fruit extract. The crystallite size of 22.7 nm for CeO2 and varied from 32.47 nm to 62.95 nm for Fe-doped CeO2 nanoparticles as calculated from the X-ray diffraction pattern. Scanning electron microscope images showed a porous network-like morphology for both the samples. Fourier transform infrared spectroscopy showed a characteristic absorption band for Ce–O at 849 cm−1. Raman spectra indicated the vibrational mode of the cubic fluorite type structure of CeO2 nanoparticles at 464 cm−1. The specific surface area of CeO2 nanoparticles, was observed to be 58 m2 g−1, while that for 2%, 4%, and 6% Fe-doped CeO2 nanoparticles was 45 m2 g−1, 34 m2 g−1, 24 m2 g−1 respectively.
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: None declared.
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Chavali, M. S., Nikolova, M. P. SN Appl. Sci. 2019, 1, 1–30. https://doi.org/10.1007/s42452-019-0592-3.Search in Google Scholar
2. Khan, M. M., Siwach, R., Kumar, S., Ahamed, M., Ahmed, J. J. Alloys Compd. 2021, 856, 158127. https://doi.org/10.1016/j.jallcom.2020.158127.Search in Google Scholar
3. Gnanam, S., Rajendran, V. J. Alloys Compd. 2018, 735, 1854–1862. https://doi.org/10.1016/j.jallcom.2017.11.330.Search in Google Scholar
4. Sabouri, Z., Moghaddas, S. S. T. H., Mostafapour, A., Darroudi, M. Ceram. Int. 2022, 48, 16306–16311. https://doi.org/10.1016/j.ceramint.2022.02.180.Search in Google Scholar
5. Apostolov, A. T., Apostolova, I. N., Wesselinowa, J. M. Phys. E Low-dimens. Syst. Nanostruct. 2020, 124, 114364. https://doi.org/10.1016/j.physe.2020.114364.Search in Google Scholar
6. Wang, W., Zhu, Q., Qin, F., Dai, Q., Wang, X. Chem. Eng. J. 2018, 333, 226–239. https://doi.org/10.1016/j.cej.2017.08.065.Search in Google Scholar
7. Rahdar, A., Aliahmad, M., Samani, M., HeidariMajd, M., Susan, M. A. B. H. Ceram. Int. 2019, 45, 7950–7955. https://doi.org/10.1016/j.ceramint.2019.01.108.Search in Google Scholar
8. Elahi, B., Mirzaee, M., Darroudi, M., Sadri, K., Kazemi Oskuee, R. Colloids Surf., B 2019, 181, 830–836. https://doi.org/10.1016/j.colsurfb.2019.06.045.Search in Google Scholar PubMed
9. Sabouri, Z., Rangrazi, A., Amiri, M. S., Khatami, M., Darroudi, M. Bioproc. Biosyst. Eng. 2021, 44, 2407–2415. https://doi.org/10.1007/s00449-021-02613-8.Search in Google Scholar PubMed
10. Sabouri, Z., Sabouri, M., Amiri, M. S., Khatami, M., Darroudi, M. Mater. Technol. 2022, 37, 555–568. https://doi.org/10.1080/10667857.2020.1863573.Search in Google Scholar
11. Channei, D., Phanichphant, S., Nakaruk, A., Mofarah, S. S., Koshy, P., Sorrell, C. C. Catalysts 2017, 7, 45. https://doi.org/10.3390/catal7020045.Search in Google Scholar
12. Elahi, B., Mirzaee, M., Darroudi, M., Kazemi Oskuee, R., Sadri, K., Gholami, L. J. Alloys Compd. 2020, 816, 152553. https://doi.org/10.1016/j.jallcom.2019.152553.Search in Google Scholar
13. López, J. M., Gilbank, A. L., García, T., Solsona, B., Agouram, S., Torrente-Murciano, L. Appl. Catal., B 2015, 174, 403–412. https://doi.org/10.1016/j.apcatb.2015.03.017.Search in Google Scholar
14. Maleki, P., Nemati, F., Gholoobi, A., Hashemzadeh, A., Sabouri, Z., Darroudi, M. Inorg. Chem. Commun. 2021, 131, 108762. https://doi.org/10.1016/j.inoche.2021.108762.Search in Google Scholar
15. Yulizar, Y., Juliyanto, S., Apriandanu, D. O. B., Apriandanu, D. O. B., Surya, R. M. J. Mol. Struct. 2021, 1231, 129904. https://doi.org/10.1016/j.molstruc.2021.129904.Search in Google Scholar
16. Channei, D., Inceesungvorn, B., Wetchakun, N., Phanichphant, S., Nakaruk, A., Koshy, P., Sorrell, C. C. Ceram. Int. 2013, 39, 3129–3134. https://doi.org/10.1016/j.ceramint.2012.09.093.Search in Google Scholar
17. Sudarsanam, P., Hillary, B., Amin, M. H., Rockstroh, N., Bentrup, U., Brückner, A., Bhargava, S. K. Langmuir 2018, 34, 2663–2673. https://doi.org/10.1021/acs.langmuir.7b03998.Search in Google Scholar PubMed
18. Jampaiah, D., Ippolito, S. J., Sabri, Y. M., Tardio, J., Selvakannan, P. R., Nafady, A., Reddy, B. M., Bhargava, S. K. Catal. Sci. Technol. 2016, 6, 1792–1803. https://doi.org/10.1039/C5CY01534K.Search in Google Scholar
19. Parimi, D., Sundararajan, V., Sadak, O., Gunasekaran, S., Mohideen, S. S., Sundaramurthy, A. ACS Omega 2019, 4, 104–113. https://doi.org/10.1021/acsomega.8b02747.Search in Google Scholar PubMed PubMed Central
20. El-Hagary, M., Shaaban, E. R., Moustafa, S. H., Gad, G. M. A. Solid State Sci. 2019, 91, 15–22. https://doi.org/10.1016/j.solidstatesciences.2019.03.005.Search in Google Scholar
21. Manikandan, V., Petrila, I., Vigneselvan, S., Mirzaei, A., Mane, R. S., Kim, S. S., Chandrasekaran, J. J. Mater. Sci. Mater. Electron. 2020, 31, 8815–8824. https://doi.org/10.1007/s10854-020-03416-5.Search in Google Scholar
22. Panda, S. R., Singh, R. K., Priyadarshini, B., Rath, P. P., Parhi, P. K., Sahoo, T., Mandal, D., Sahoo, T. R. Mater. Sci. Semicond. Process. 2019, 104, 104669. https://doi.org/10.1016/j.mssp.2019.104669.Search in Google Scholar
© 2023 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Review
- Preparations and applications of organic conducting polymers/graphene composites in heavy metal ion sensing: a review
- Original Papers
- Complex dielectric, electric modulus, impedance, and optical conductivity of Sr3−x Pb x Fe2TeO9 (x = 1.50, 1.88 and 2.17)
- Complex permittivity and predominance of non-overlapping small-polaron tunneling conduction process in copper indium selenide compound
- Effect of Bacillus and Pseudomonas biofilms on the corrosion behavior of AISI 304 stainless steel
- Fabrication of magnesium oxide nanoparticles using Eucalyptus tereticornis seed extract and their characterisation
- Greener route for synthesis of cerium oxide and Fe-doped cerium oxide nanoparticles using acacia concinna fruit extract
- Phase equilibria of Ni–Al–Pd and Ni–Cr–Pd ternary systems and Ni–Al–Cr–Pd quaternary system at 1423 K
- Effect of grain size on oxidation behaviour of Ag-20Cu-30Cr alloys in 0.1 MPa pure O2 at 700 and 800 °C
- News
- DGM – Deutsche Gesellschaft für Materialkunde
Articles in the same Issue
- Frontmatter
- Review
- Preparations and applications of organic conducting polymers/graphene composites in heavy metal ion sensing: a review
- Original Papers
- Complex dielectric, electric modulus, impedance, and optical conductivity of Sr3−x Pb x Fe2TeO9 (x = 1.50, 1.88 and 2.17)
- Complex permittivity and predominance of non-overlapping small-polaron tunneling conduction process in copper indium selenide compound
- Effect of Bacillus and Pseudomonas biofilms on the corrosion behavior of AISI 304 stainless steel
- Fabrication of magnesium oxide nanoparticles using Eucalyptus tereticornis seed extract and their characterisation
- Greener route for synthesis of cerium oxide and Fe-doped cerium oxide nanoparticles using acacia concinna fruit extract
- Phase equilibria of Ni–Al–Pd and Ni–Cr–Pd ternary systems and Ni–Al–Cr–Pd quaternary system at 1423 K
- Effect of grain size on oxidation behaviour of Ag-20Cu-30Cr alloys in 0.1 MPa pure O2 at 700 and 800 °C
- News
- DGM – Deutsche Gesellschaft für Materialkunde