Home Effect of grain size on oxidation behaviour of Ag-20Cu-30Cr alloys in 0.1 MPa pure O2 at 700 and 800 °C
Article
Licensed
Unlicensed Requires Authentication

Effect of grain size on oxidation behaviour of Ag-20Cu-30Cr alloys in 0.1 MPa pure O2 at 700 and 800 °C

  • Xinyue Fan , Yang Han , Jiarui Yu , Changwei Li , Zhongqiu Cao EMAIL logo , Ke Zhang , Yan Wang and Shigang Xin
Published/Copyright: January 5, 2023
Become an author with De Gruyter Brill

Abstract

Bulk three-phase nanocrystalline (NC) Ag-20Cu-30Cr alloy was obtained by hot-pressing mechanically alloyed powders, and oxidation tests were completed in 0.1 MPa pure O2 at 700 and 800 °C. The oxidation behaviour of the alloy and the effect of the grain size were also studied in comparison with the previous coarse-grained (CG) Ag-20Cu-30Cr alloy prepared by a powder metallurgy route. At the two temperatures the oxidation kinetic curves of the NC Ag-20Cu-30Cr alloy are composed of three parabolic stages, and their parabolic rate constants become smaller as the oxidation time increases. The oxidation rate at 700 °C is higher before 5 h, but lower after 5 h than that at 800 °C. Furthermore, the oxidation rate of the NC Ag-20Cu-30Cr alloy is lower than that of the CG Ag-20Cu-30Cr alloy at the same temperature. Moreover, the NC Ag-20Cu-30Cr alloy forms an outer oxide layer composed of the Cu oxides and double oxides of the metallic Ag, Cu and Cr as well as an inner regular, continuous and protective chromia layer. Thus, the Ag-20Cu-30Cr alloy can complete the transition from an internal to external oxidation of the reactive component Cr, and in the end form a regular, continuous and protective chromia layer after nanocrystallization.


Corresponding author: Zhongqiu Cao, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, P. R. China, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: Authors are very grateful for the financial supports from the National Natural Science Foundation of China (51271127), and the Liaoning Provincial Key Research and Development Program of China (2018304025).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Gleiter, H. Prog. Mater. Sci. 1989, 33, 223. https://doi.org/10.1016/0079-6425(89)90001-7.Search in Google Scholar

2. Liang, T., Chen, Z., Yang, X. Q., Zhang, J. Y., Zhang, P. Int. J. Mater. Res. 2017, 108, 435. https://doi.org/10.3139/146.111496.Search in Google Scholar

3. Koch, C. C. J. Mater. Sci. 2007, 42, 1403. https://doi.org/10.1007/s10853-006-0609-3.Search in Google Scholar

4. Fang, T. H., Li, W., Tao, N. R., Lu, K. Science 2011, 331, 1587. https://doi.org/10.1126/science.1200177.Search in Google Scholar PubMed

5. Hahn, E. N., Meyers, M. A. Mater. Sci. Eng. A 2015, 646, 101. https://doi.org/10.1016/j.msea.2015.07.075.Search in Google Scholar

6. Wang, S. G., Sun, M., Han, H. B., Long, K., Zhang, Z. D. Corrosion Sci. 2013, 72, 64. https://doi.org/10.1016/j.corsci.2013.03.008.Search in Google Scholar

7. Yang, L. L., Wang, J. L., Yang, R. Z., Yang, S. S., Wang, F. H. Corrosion Sci. 2021, 180, 109182. https://doi.org/10.1016/j.corsci.2020.109182.Search in Google Scholar

8. Wang, J. L., Chen, M. H., Yang, L. L., Zhu, S. L., Wang, F. H. Corrosion Sci. 2015, 98, 530. https://doi.org/10.1016/j.corsci.2015.05.062.Search in Google Scholar

9. Bak, S. H., Lee, D. B. Oxid. Met. 2015, 84, 345. https://doi.org/10.1007/s11085-015-9558-z.Search in Google Scholar

10. Lu, Y. H., Zhang, M. L., Tang, W. B., Song, Y. Y., Rong, L. J. Oxid. Met. 2019, 91, 495. https://doi.org/10.1007/s11085-019-09895-0.Search in Google Scholar

11. Niu, Y., Song, J. X., Gesmundo, F., Farne, G. Oxid. Met. 2001, 55, 291. https://doi.org/10.1023/A:1010312227843.Search in Google Scholar

12. Fu, G. Y., Niu, Y., Gesmundo, F. Corrosion Sci. 2003, 45, 559. https://doi.org/10.1016/S0010-938X(02)00141-5.Search in Google Scholar

13. Han, Z., Lu, L., Zhang, H. W., Yang, Z. Q., Wang, F. H., Lu, K. Oxid. Met. 2005, 63, 261. https://doi.org/10.1007/s11085-005-4381-6.Search in Google Scholar

14. Zhou, Y., Peng, X., Wang, F. H. Scripta Mater. 2004, 50, 1429. https://doi.org/10.1016/j.scriptamat.2004.03.014.Search in Google Scholar

15. Niu, Y., Gesmundo, F., Farne, G., Li, Y. S., Matteazzi, P., Randi, G. Corrosion Sci. 2000, 42, 1763. https://doi.org/10.1016/s0010-938x(00)00035-4.Search in Google Scholar

16. Rahman, A., Chawla, V., Jayaganthan, R., Chandra, R., Ambardar, R. Oxid. Met. 2010, 74, 341. https://doi.org/10.1007/s11085-010-9217-3.Search in Google Scholar

17. Cao, Z. Q., Sun, H. J., Lu, J., Zhang, K., Sun, Y. Corrosion Sci. 2014, 80, 184. https://doi.org/10.1016/j.corsci.2013.11.025.Search in Google Scholar

18. Chen, S. H., Jin, X. J., Rong, L. J. Oxid. Met. 2016, 85, 189. https://doi.org/10.1007/s11085-015-9596-6.Search in Google Scholar

19. Cao, Z. Q., Li, C. W., Jia, Z. Q., Wang, Y. Corrosion Sci. 2016, 110, 167. https://doi.org/10.1016/j.corsci.2016.04.024.Search in Google Scholar

20. Han, Y., Yu, J. R., Fan, X. Y., Li, C. W., Cao, Z. Q., Wang, Y., Zhang, K., Xin, S. G. J. Mater. Eng. Perform. 2021, 30, 9209. https://doi.org/10.1007/s11665-021-06119-y.Search in Google Scholar

21. Wagner, C. Z. Elektrochem. 1959, 63, 772. https://doi.org/10.1002/bbpc.19590630713.Search in Google Scholar

22. Gesmundo, F., Viani, F., Niu, Y. Oxid. Met. 1996, 45, 51. https://doi.org/10.1007/BF01046820.Search in Google Scholar

23. Gesmundo, F., Niu, Y. Oxid. Met. 2003, 60, 347. https://doi.org/10.1023/A:1027398104508.Search in Google Scholar

24. Niu, Y., Gesmundo, F. Oxid. Met. 2003, 60, 371. https://doi.org/10.1023/A:1027379521347.Search in Google Scholar

25. Guo, Q. Q., Liu, S., Wu, X. F., Liu, L. L., Niu, Y. Corrosion Sci. 2015, 100, 579. https://doi.org/10.1016/j.corsci.2015.08.034.Search in Google Scholar

26. Hart, E. W. Acta Mater. 1957, 5, 597. https://doi.org/10.1016/0001-6160(57)90127-X.Search in Google Scholar

27. Wang, F. H. Oxid. Met. 1997, 48, 215. https://doi.org/10.1007/bf01670500.Search in Google Scholar

28. Birringer, R. Mater. Sci. Eng. A 1989, 117, 33. https://doi.org/10.1016/0921-5093(89)90083-X.Search in Google Scholar

29. Wang, C. L., Lin, S. Z., Niu, Y., Wu, W. T., Zhao, Z. L. Appl. Phys. 2003, 76, 157. https://doi.org/10.1007/s003390201402.Search in Google Scholar

30. Wang, F., Lou, H. Y., Zhu, S. L., Wu, W. T. Oxid. Met. 1996, 45, 39. https://doi.org/10.1007/BF01046819.Search in Google Scholar

31. Geng, S. J., Wang, F. H., Zhu, S. L. Oxid. Met. 2002, 57, 231. https://doi.org/10.1023/A:1014870101143.Search in Google Scholar

Received: 2021-10-11
Accepted: 2022-03-31
Published Online: 2023-01-05
Published in Print: 2023-02-23

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 16.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2021-8599/html
Scroll to top button