Abstract
Bulk three-phase nanocrystalline (NC) Ag-20Cu-30Cr alloy was obtained by hot-pressing mechanically alloyed powders, and oxidation tests were completed in 0.1 MPa pure O2 at 700 and 800 °C. The oxidation behaviour of the alloy and the effect of the grain size were also studied in comparison with the previous coarse-grained (CG) Ag-20Cu-30Cr alloy prepared by a powder metallurgy route. At the two temperatures the oxidation kinetic curves of the NC Ag-20Cu-30Cr alloy are composed of three parabolic stages, and their parabolic rate constants become smaller as the oxidation time increases. The oxidation rate at 700 °C is higher before 5 h, but lower after 5 h than that at 800 °C. Furthermore, the oxidation rate of the NC Ag-20Cu-30Cr alloy is lower than that of the CG Ag-20Cu-30Cr alloy at the same temperature. Moreover, the NC Ag-20Cu-30Cr alloy forms an outer oxide layer composed of the Cu oxides and double oxides of the metallic Ag, Cu and Cr as well as an inner regular, continuous and protective chromia layer. Thus, the Ag-20Cu-30Cr alloy can complete the transition from an internal to external oxidation of the reactive component Cr, and in the end form a regular, continuous and protective chromia layer after nanocrystallization.
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: Authors are very grateful for the financial supports from the National Natural Science Foundation of China (51271127), and the Liaoning Provincial Key Research and Development Program of China (2018304025).
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Gleiter, H. Prog. Mater. Sci. 1989, 33, 223. https://doi.org/10.1016/0079-6425(89)90001-7.Search in Google Scholar
2. Liang, T., Chen, Z., Yang, X. Q., Zhang, J. Y., Zhang, P. Int. J. Mater. Res. 2017, 108, 435. https://doi.org/10.3139/146.111496.Search in Google Scholar
3. Koch, C. C. J. Mater. Sci. 2007, 42, 1403. https://doi.org/10.1007/s10853-006-0609-3.Search in Google Scholar
4. Fang, T. H., Li, W., Tao, N. R., Lu, K. Science 2011, 331, 1587. https://doi.org/10.1126/science.1200177.Search in Google Scholar PubMed
5. Hahn, E. N., Meyers, M. A. Mater. Sci. Eng. A 2015, 646, 101. https://doi.org/10.1016/j.msea.2015.07.075.Search in Google Scholar
6. Wang, S. G., Sun, M., Han, H. B., Long, K., Zhang, Z. D. Corrosion Sci. 2013, 72, 64. https://doi.org/10.1016/j.corsci.2013.03.008.Search in Google Scholar
7. Yang, L. L., Wang, J. L., Yang, R. Z., Yang, S. S., Wang, F. H. Corrosion Sci. 2021, 180, 109182. https://doi.org/10.1016/j.corsci.2020.109182.Search in Google Scholar
8. Wang, J. L., Chen, M. H., Yang, L. L., Zhu, S. L., Wang, F. H. Corrosion Sci. 2015, 98, 530. https://doi.org/10.1016/j.corsci.2015.05.062.Search in Google Scholar
9. Bak, S. H., Lee, D. B. Oxid. Met. 2015, 84, 345. https://doi.org/10.1007/s11085-015-9558-z.Search in Google Scholar
10. Lu, Y. H., Zhang, M. L., Tang, W. B., Song, Y. Y., Rong, L. J. Oxid. Met. 2019, 91, 495. https://doi.org/10.1007/s11085-019-09895-0.Search in Google Scholar
11. Niu, Y., Song, J. X., Gesmundo, F., Farne, G. Oxid. Met. 2001, 55, 291. https://doi.org/10.1023/A:1010312227843.Search in Google Scholar
12. Fu, G. Y., Niu, Y., Gesmundo, F. Corrosion Sci. 2003, 45, 559. https://doi.org/10.1016/S0010-938X(02)00141-5.Search in Google Scholar
13. Han, Z., Lu, L., Zhang, H. W., Yang, Z. Q., Wang, F. H., Lu, K. Oxid. Met. 2005, 63, 261. https://doi.org/10.1007/s11085-005-4381-6.Search in Google Scholar
14. Zhou, Y., Peng, X., Wang, F. H. Scripta Mater. 2004, 50, 1429. https://doi.org/10.1016/j.scriptamat.2004.03.014.Search in Google Scholar
15. Niu, Y., Gesmundo, F., Farne, G., Li, Y. S., Matteazzi, P., Randi, G. Corrosion Sci. 2000, 42, 1763. https://doi.org/10.1016/s0010-938x(00)00035-4.Search in Google Scholar
16. Rahman, A., Chawla, V., Jayaganthan, R., Chandra, R., Ambardar, R. Oxid. Met. 2010, 74, 341. https://doi.org/10.1007/s11085-010-9217-3.Search in Google Scholar
17. Cao, Z. Q., Sun, H. J., Lu, J., Zhang, K., Sun, Y. Corrosion Sci. 2014, 80, 184. https://doi.org/10.1016/j.corsci.2013.11.025.Search in Google Scholar
18. Chen, S. H., Jin, X. J., Rong, L. J. Oxid. Met. 2016, 85, 189. https://doi.org/10.1007/s11085-015-9596-6.Search in Google Scholar
19. Cao, Z. Q., Li, C. W., Jia, Z. Q., Wang, Y. Corrosion Sci. 2016, 110, 167. https://doi.org/10.1016/j.corsci.2016.04.024.Search in Google Scholar
20. Han, Y., Yu, J. R., Fan, X. Y., Li, C. W., Cao, Z. Q., Wang, Y., Zhang, K., Xin, S. G. J. Mater. Eng. Perform. 2021, 30, 9209. https://doi.org/10.1007/s11665-021-06119-y.Search in Google Scholar
21. Wagner, C. Z. Elektrochem. 1959, 63, 772. https://doi.org/10.1002/bbpc.19590630713.Search in Google Scholar
22. Gesmundo, F., Viani, F., Niu, Y. Oxid. Met. 1996, 45, 51. https://doi.org/10.1007/BF01046820.Search in Google Scholar
23. Gesmundo, F., Niu, Y. Oxid. Met. 2003, 60, 347. https://doi.org/10.1023/A:1027398104508.Search in Google Scholar
24. Niu, Y., Gesmundo, F. Oxid. Met. 2003, 60, 371. https://doi.org/10.1023/A:1027379521347.Search in Google Scholar
25. Guo, Q. Q., Liu, S., Wu, X. F., Liu, L. L., Niu, Y. Corrosion Sci. 2015, 100, 579. https://doi.org/10.1016/j.corsci.2015.08.034.Search in Google Scholar
26. Hart, E. W. Acta Mater. 1957, 5, 597. https://doi.org/10.1016/0001-6160(57)90127-X.Search in Google Scholar
27. Wang, F. H. Oxid. Met. 1997, 48, 215. https://doi.org/10.1007/bf01670500.Search in Google Scholar
28. Birringer, R. Mater. Sci. Eng. A 1989, 117, 33. https://doi.org/10.1016/0921-5093(89)90083-X.Search in Google Scholar
29. Wang, C. L., Lin, S. Z., Niu, Y., Wu, W. T., Zhao, Z. L. Appl. Phys. 2003, 76, 157. https://doi.org/10.1007/s003390201402.Search in Google Scholar
30. Wang, F., Lou, H. Y., Zhu, S. L., Wu, W. T. Oxid. Met. 1996, 45, 39. https://doi.org/10.1007/BF01046819.Search in Google Scholar
31. Geng, S. J., Wang, F. H., Zhu, S. L. Oxid. Met. 2002, 57, 231. https://doi.org/10.1023/A:1014870101143.Search in Google Scholar
© 2022 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Review
- Preparations and applications of organic conducting polymers/graphene composites in heavy metal ion sensing: a review
- Original Papers
- Complex dielectric, electric modulus, impedance, and optical conductivity of Sr3−x Pb x Fe2TeO9 (x = 1.50, 1.88 and 2.17)
- Complex permittivity and predominance of non-overlapping small-polaron tunneling conduction process in copper indium selenide compound
- Effect of Bacillus and Pseudomonas biofilms on the corrosion behavior of AISI 304 stainless steel
- Fabrication of magnesium oxide nanoparticles using Eucalyptus tereticornis seed extract and their characterisation
- Greener route for synthesis of cerium oxide and Fe-doped cerium oxide nanoparticles using acacia concinna fruit extract
- Phase equilibria of Ni–Al–Pd and Ni–Cr–Pd ternary systems and Ni–Al–Cr–Pd quaternary system at 1423 K
- Effect of grain size on oxidation behaviour of Ag-20Cu-30Cr alloys in 0.1 MPa pure O2 at 700 and 800 °C
- News
- DGM – Deutsche Gesellschaft für Materialkunde
Articles in the same Issue
- Frontmatter
- Review
- Preparations and applications of organic conducting polymers/graphene composites in heavy metal ion sensing: a review
- Original Papers
- Complex dielectric, electric modulus, impedance, and optical conductivity of Sr3−x Pb x Fe2TeO9 (x = 1.50, 1.88 and 2.17)
- Complex permittivity and predominance of non-overlapping small-polaron tunneling conduction process in copper indium selenide compound
- Effect of Bacillus and Pseudomonas biofilms on the corrosion behavior of AISI 304 stainless steel
- Fabrication of magnesium oxide nanoparticles using Eucalyptus tereticornis seed extract and their characterisation
- Greener route for synthesis of cerium oxide and Fe-doped cerium oxide nanoparticles using acacia concinna fruit extract
- Phase equilibria of Ni–Al–Pd and Ni–Cr–Pd ternary systems and Ni–Al–Cr–Pd quaternary system at 1423 K
- Effect of grain size on oxidation behaviour of Ag-20Cu-30Cr alloys in 0.1 MPa pure O2 at 700 and 800 °C
- News
- DGM – Deutsche Gesellschaft für Materialkunde