Complex permittivity and predominance of non-overlapping small-polaron tunneling conduction process in copper indium selenide compound
-
Mohamed Essaleh
, Rachid Bouferra
, Mohammed Mansori , Giovanni Marín , Syed M. Wasim and Dinesh Pratap Singh
Abstract
This paper presents a study of the complex permittivity of n-type copper indium selenide semiconductor compound at low temperatures down to −175 °C. Alternating current with frequency varying between 20 Hz and 1 MHz is applied to the material in order to measure the dielectric constant ɛ′ and dielectric loss D = ɛ″/ɛ′. ɛ′ is found to decrease with temperature and frequency, whereas D decreases with frequency and increases with temperature. The experimental data of ɛ″ agree with the expression
Acknowledgments
The authors are extremely grateful to Professor Dr. Dennis Mitchell, for critically revising the manuscript.
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: None declared.
-
Conflict of interest statement: The authors declare no conflict of interest.
-
Data availability: The data that support the findings of this study are available from the corresponding author upon reasonable request.
References
1. Marín, G., Wasim, S. M., Rincón, C., Essaleh, L. Mater. Lett. 2015, 157, 70. https://doi.org/10.1016/j.matlet.2015.05.025.Search in Google Scholar
2. Biswas, A., Sil, S., Dey, A., Datta, J., Das, D., Ray, P. P. J. Phys. Chem. Solid. 2021, 150, 109878. https://doi.org/10.1016/j.jpcs.2020.109878.Search in Google Scholar
3. Ando, Y., Khatri, I., Matsumori, H., Sugiyama, M., Nakada, T. Phys. Status Solidi A 2019, 216, 1900164. https://doi.org/10.1002/pssa.201900164.Search in Google Scholar
4. Raguse, J. M., Muzzillo, C. P., Sites, J. R., Mansfield, L. IEEE J. Photovoltaics 2016, 7, 303. https://doi.org/10.1109/JPHOTOV.2016.2621343.Search in Google Scholar
5. Lanfredi, S., Saia, P. S., Lebullenger, R., Hernandes, A. C. Solid State Ionics 2002, 146, 329. https://doi.org/10.1016/S0167-2738(01)01030-X.Search in Google Scholar
6. Lakhdar, M. H., Ouni, B., Amlouk, M. Mater. Sci. Semicond. Process. 2014, 19, 32. https://doi.org/10.1016/j.mssp.2013.11.038.Search in Google Scholar
7. Marín, G., Essaleh, L., Amhil, S., Wasim, S. M., Bouferra, R., Zoubir, A., El Alaoui El Moujahid, M. E., Singh, D. P., Vivas, L. Physica B 2020, 593, 412283. https://doi.org/10.1016/j.physb.2020.412283.Search in Google Scholar
8. Lahlali, S., Essaleh, L., Belaqziz, M., Chehouani, H., Alimoussa, A., Djessas, K., Viallet, B., Gauffier, J. L., Cayez, S. Physica B 2017, 526, 54. https://doi.org/10.1016/j.physb.2017.09.069.Search in Google Scholar
9. Elliot, S. R. Solid State Ionics 1988, 27, 131. https://doi.org/10.1016/0167-2738(88)90003-3.Search in Google Scholar
10. Essaleh, L., Amhil, S., Wasim, S. M., Marín, G., Choukri, E., Hajji, L. Physica E 2018, 99, 37. https://doi.org/10.1016/j.physe.2018.01.012.Search in Google Scholar
11. Atkinson, A., Taylor, R. I. Philos. Mag. A 1981, 43, 979. https://doi.org/10.1080/01418618108239506.Search in Google Scholar
12. Landauer, R. J. Appl. Phys. 1952, 23, 779. https://doi.org/10.1063/1.1702301.Search in Google Scholar
13. Bauerle, J. E. J. Phys. Chem. Solid. 1969, 30, 2657. https://doi.org/10.1016/0022-3697(69)90039-0.Search in Google Scholar
14. Maier, J. Ber. Bunsen-Ges. Phys. Chem. 1986, 90, 26. https://doi.org/10.1002/bbpc.19860900105.Search in Google Scholar
15. Rincón, C., Wasim, S. M., Marín, G., Márquez, R., Nieves, L., Pérez, G. S. J. Appl. Phys. 2001, 90, 4423. https://doi.org/10.1063/1.1405144.Search in Google Scholar
16. Saradhi, B. V. B., Srini, K., Prasad, G., Suryanarayana, S. V., Bhimasankaram, T. Mater. Sci. Eng. B 2003, 98, 10. https://doi.org/10.1016/S0921-5107(02)00576-7.Search in Google Scholar
17. von Hauff, E. J. Phys. Chem. C 2019, 123, 11329. https://doi.org/10.1021/acs.jpcc.9b00892.Search in Google Scholar
18. Behera, B., Nayak, P., Choudhary, R. N. P. Mater. Chem. Phys. 2006, 100, 138. https://doi.org/10.1016/j.matchemphys.2005.12.022.Search in Google Scholar
19. Giuntini, J. C., Zanchetta, J. V., Jullien, D., Eholie, R., Houenou, P. J. Non-Cryst. Solids 1981, 45, 57. https://doi.org/10.1016/0022-3093(81)90089-2.Search in Google Scholar
20. Chithambaram, V., Jerome Das, S., Krishnan, S. J. Alloys Compd. 2011, 509, 4543. https://doi.org/10.1016/j.jallcom.2011.01.091.Search in Google Scholar
21. Zaitouni, H., Hajji, L., Choukri, E., Mezzane, D., Abkhar, Z., Essaleh, L., Alimoussa, A., El Marssi, M., Luk’yanchuk, I. A. Superlattice. Microst. 2019, 127, 176. https://doi.org/10.1016/j.spmi.2017.11.060.Search in Google Scholar
22. Sinclair, D. C., West, A. R. J. Appl. Phys. 1989, 66, 3850. https://doi.org/10.1063/1.344049.Search in Google Scholar
23. Sen, S., Pramanik, P., Choudhary, R. N. P. Appl. Phys. A 2006, 82, 549. https://doi.org/10.1007/s00339-005-3330-1.Search in Google Scholar
24. Luo, T., Liu, Z., Zhang, F., Li, Y. J. Appl. Phys. 2018, 123, 124108. https://doi.org/10.1063/1.5013264.Search in Google Scholar
25. Mustafaeva, S. N., Asadov, S. M., Guseinov, D. T., Kasimoglu, I. Semicond. Phys. Quantum Electron. 2016, 19, 201. https://doi.org/10.15407/spqeo19.02.201.Search in Google Scholar
© 2023 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Review
- Preparations and applications of organic conducting polymers/graphene composites in heavy metal ion sensing: a review
- Original Papers
- Complex dielectric, electric modulus, impedance, and optical conductivity of Sr3−x Pb x Fe2TeO9 (x = 1.50, 1.88 and 2.17)
- Complex permittivity and predominance of non-overlapping small-polaron tunneling conduction process in copper indium selenide compound
- Effect of Bacillus and Pseudomonas biofilms on the corrosion behavior of AISI 304 stainless steel
- Fabrication of magnesium oxide nanoparticles using Eucalyptus tereticornis seed extract and their characterisation
- Greener route for synthesis of cerium oxide and Fe-doped cerium oxide nanoparticles using acacia concinna fruit extract
- Phase equilibria of Ni–Al–Pd and Ni–Cr–Pd ternary systems and Ni–Al–Cr–Pd quaternary system at 1423 K
- Effect of grain size on oxidation behaviour of Ag-20Cu-30Cr alloys in 0.1 MPa pure O2 at 700 and 800 °C
- News
- DGM – Deutsche Gesellschaft für Materialkunde
Articles in the same Issue
- Frontmatter
- Review
- Preparations and applications of organic conducting polymers/graphene composites in heavy metal ion sensing: a review
- Original Papers
- Complex dielectric, electric modulus, impedance, and optical conductivity of Sr3−x Pb x Fe2TeO9 (x = 1.50, 1.88 and 2.17)
- Complex permittivity and predominance of non-overlapping small-polaron tunneling conduction process in copper indium selenide compound
- Effect of Bacillus and Pseudomonas biofilms on the corrosion behavior of AISI 304 stainless steel
- Fabrication of magnesium oxide nanoparticles using Eucalyptus tereticornis seed extract and their characterisation
- Greener route for synthesis of cerium oxide and Fe-doped cerium oxide nanoparticles using acacia concinna fruit extract
- Phase equilibria of Ni–Al–Pd and Ni–Cr–Pd ternary systems and Ni–Al–Cr–Pd quaternary system at 1423 K
- Effect of grain size on oxidation behaviour of Ag-20Cu-30Cr alloys in 0.1 MPa pure O2 at 700 and 800 °C
- News
- DGM – Deutsche Gesellschaft für Materialkunde