Startseite Effect of Bacillus and Pseudomonas biofilms on the corrosion behavior of AISI 304 stainless steel
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Effect of Bacillus and Pseudomonas biofilms on the corrosion behavior of AISI 304 stainless steel

  • Hafiz Zeshan Wadood , Aruliah Rajasekar , Ameeq Farooq und Kashif Mairaj Deen ORCID logo EMAIL logo
Veröffentlicht/Copyright: 11. Januar 2023
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this research work, the corrosion tendency of stainless steel 304 caused by the Pseudomonas aeruginosa ZK and Bacillus subtilis S1X bacterial strains is investigated. The topographical features of the biofilms achieved after 14 days of incubation at 37 °C were examined by means of scanning electron microscopy. Fourier transform infrared spectroscopic analysis of the extracellular polymeric substance was carried out to estimate the chemical composition of the biofilm. Electrochemical impedance spectroscopy and Tafel polarization test methods were applied to understand the in-situ corrosion tendency of the stainless steel 304 in the presence of P. aeruginosa ZK and B. subtilis S1X strains. Compared to the biofilm produced by the P. aeruginosa ZK, the extracellular polymeric substance in the B. subtilis S1X containing bacteria was found to be porous and non-uniform. The improved hydrophobicity and uniformity of the P. aeruginosa ZK containing biofilm retarded the corrosion of the underlying stainless steel 304 sample. Appreciably large resistance of the P. aeruginosa ZK biofilm (∼6.04 kΩ-cm2) and hindered charge transport (11.12 kΩ-cm2) were evident from the electrochemical impedance spectroscopy analysis. In support of these results, a large cathodic Tafel slope (0.2 V/decade) and low corrosion rate (1.69 μA cm−2) were corroborated by the inhibitive properties of the P. aeruginosa ZK containing biofilm. However, the localized corrosion of the substrate in the presence of B. subtilis S1X bacteria was caused by the porosity and non-homogeneity of the extracellular polymeric substance layer. The small charge transfer resistance, high dissolution rate and pitting of the surface under B. subtilis S1X biofilm were comparable to the corrosion properties of stainless steel 304 in a controlled medium. These results highlighted the poor corrosion inhibitive properties of the B. subtilis S1X biofilm compared to the P. aeruginosa ZK bacterial strain.


Corresponding author: Kashif Mairaj Deen, Department of Materials Engineering, The University of British Columbia, Vancouver, V6T 1Z4, BC, Canada, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Videla, H. A., Herrera, L. K. Int. Microbiol. 2005, 8, 169–180.Suche in Google Scholar

2. Qu, Q., He, Y., Wang, L., Xu, H., Li, L., Chen, Y., Ding, Z. Corrosion Sci. 2015, 91, 321–329. https://doi.org/10.1016/j.corsci.2014.11.032.Suche in Google Scholar

3. Javaherdashti, R. Microbiologically Influenced Corrosion (MIC). In Microbiologically Influenced Corrosion. Engineering Materials and Processes; Springer: Cham, 2017. https://doi.org/10.1007/978-3-319-44306-5_4.10.1007/978-3-319-44306-5Suche in Google Scholar

4. Liu, H., Gu, T., Zhang, G., Wang, W., Dong, S., Cheng, Y., Liu, H. Corrosion Sci. 2016, 105, 149–160. https://doi.org/10.1016/j.corsci.2016.01.012.Suche in Google Scholar

5. Jia, R., Yang, D., Xu, D., Gu, T. Sci. Rep. 2017, 7, 1–11. https://doi.org/10.1038/s41598-017-07312-7.Suche in Google Scholar PubMed PubMed Central

6. Soltani, N., Tavakkoli, N., Kashani, M. K., Mosavizadeh, A., Oguzie, E., Jalali, M. J. Ind. Eng. Chem. 2014, 20, 3217–3227. https://doi.org/10.1016/j.jiec.2013.12.002.Suche in Google Scholar

7. Nagiub, A., Mansfeld, F. Electrochim. Acta 2002, 47, 2319–2333. https://doi.org/10.1016/S0013-4686(02)00082-8.Suche in Google Scholar

8. Gunasekaran, G., Chongdar, S., Gaonkar, S., Kumar, P. Corrosion Sci. 2004, 46, 1953–1967. https://doi.org/10.1016/j.corsci.2003.10.023.Suche in Google Scholar

9. San, N. O., Nazır, H., Dönmez, G. Corrosion Sci. 2014, 79, 177–183. https://doi.org/10.1016/j.corsci.2013.11.004.Suche in Google Scholar

10. Liu, H., Gu, T., Asif, M., Zhang, G., Liu, H. Corrosion Sci. 2017, 114, 102–111. https://doi.org/10.1016/j.corsci.2016.10.025.Suche in Google Scholar

11. Batmanghelich, F., Li, L., Seo, Y. Corrosion Sci. 2017, 121, 94–104. https://doi.org/10.1016/j.corsci.2017.03.008.Suche in Google Scholar

12. Xu, D., Li, Y., Gu, T. Bioelectrochemistry 2016, 110, 52–58. https://doi.org/10.1016/j.bioelechem.2016.03.003.Suche in Google Scholar PubMed

13. Li, S., Li, L., Qu, Q., Kang, Y., Zhu, B., Yu, D., Huang, R. Colloids Surf. B Biointerfaces 2019, 173, 139–147. https://doi.org/10.1016/j.colsurfb.2018.09.059.Suche in Google Scholar PubMed

14. Videla, H. A., Herrera, L. K. Int. Biodeterior. Biodegrad. 2009, 63, 896–900. https://doi.org/10.1016/j.ibiod.2009.02.002.Suche in Google Scholar

15. Zhang, D., Qian, H., Xiao, K., Zhou, F., Liu, Z., Li, X. Corros. Eng. Sci. 2016, 51, 285–290. https://doi.org/10.1080/1478422X.2015.1104062.Suche in Google Scholar

16. Javed, M. A., Stoddart, P. R., McArthur, S. L., Wade, S. A. Biofouling 2013, 29, 939–952. https://doi.org/10.1080/08927014.2013.820826.Suche in Google Scholar PubMed

17. Dubiel, M., Hsu, C. H., Chien, C. C. Appl. Environ. Microbiol. 2002, 68, 1440–1445. https://doi.org/10.1128/AEM.68.3.1440-1445.2002.Suche in Google Scholar PubMed PubMed Central

18. Wadood, H. Z., Rajasekar, A., Ting, Y. P., Sabari, A. N. Arabian J. Sci. Eng. 2015, 40, 1825–1836. https://doi.org/10.1007/s13369-015-1590-4.Suche in Google Scholar

19. Rajasekar, A., Ting, Y. P. Ind. Eng. Chem. Res. 2011, 50, 12534–12541. https://doi.org/10.1021/ie200602a.Suche in Google Scholar

20. Wu, J. J., Zhang, D., Wang, P., Cheng, Y., Sun, M., Chen, S. Q. Corrosion Sci. 2016, 116, 552–562. https://doi.org/10.1016/j.corsci.2016.04.047.Suche in Google Scholar

21. Liu, T., Wang, Y., Pan, S., Zhao, Q., Zhang, C., Gao, S., Guo, Z., Guo, N., Sand, W., Chang, X., Dong, L., Yina, Y. Corrosion Sci. 2019, 149, 153–163. https://doi.org/10.1016/j.corsci.2019.01.010.Suche in Google Scholar

22. Moradi, M., Song, Z., Yang, L., Jiang, J., He, J. Corrosion Sci. 2014, 84, 103–112. https://doi.org/10.1016/j.corsci.2014.03.018.Suche in Google Scholar

23. Wadood, H. Z., Sabri, A. N. Pol. J. Microbiol. 2013, 62, 411–418. https://doi.org/10.1002/jobm.200800212.Suche in Google Scholar PubMed

24. Rosenberg, M. FEMS Microbiol. Lett. 1984, 22, 289–295. https://doi.org/10.1111/j.1574-6968.1984.tb00743.x.Suche in Google Scholar

25. Basson, A., Flemming, L., Chenia, H. Microb. Ecol. 2008, 55, 1–14. https://doi.org/10.1007/s00248-007-9245-y.Suche in Google Scholar PubMed

26. Wadood, H. Z., Rajasekar, A., Farooq, A., Ting, Y. P., Sabri, A. N. J. Basic Microbiol. 2020, 60, 243–252. https://doi.org/10.1002/jobm.201900489.Suche in Google Scholar PubMed

27. An, Y. H., Friedman, R. J., Eds. Handbook of Bacterial Adhesion: Principles, Methods, and Applications; Humana Press Inc.: Totowa, New Jersey, 2000; pp. 53–72.10.1385/1592592244Suche in Google Scholar

28. Kang, C. K., Lee, Y. S. J. Mater. Sci. Mater. Med. 2007, 18, 1389–1398. https://doi.org/10.1007/s10856-006-0079-9.Suche in Google Scholar PubMed

29. Krasowska, A., Sigler, K. Front. Cell. Infect. Microbiol. 2014, 4, 112. https://doi.org/10.3389/fcimb.2014.00112.Suche in Google Scholar PubMed PubMed Central

30. Mirani, Z. A., Fatima, A., Urooj, S., Aziz, M., Khan, M. N., Abbas, T. Iran. J. Basic Med. Sci. 2018, 21, 760. https://doi.org/10.22038/IJBMS.2018.28525.6917.Suche in Google Scholar PubMed PubMed Central

31. Lodhi, M., Deen, K., Rahman, Z. U., Farooq, A., Haider, W. J. Ind. Eng. Chem. 2018, 65, 180–187. https://doi.org/10.1016/j.jiec.2018.04.027.Suche in Google Scholar

32. Chen, S., Zhang, D. Corrosion Sci. 2018, 136, 275–284. https://doi.org/10.1016/j.corsci.2018.03.017.Suche in Google Scholar

33. Lekbach, Y., Li, Z., Xu, D., El Abed, S., Dong, Y., Liu, D., Gu, T., Koraichi, S. I., Yang, K., Wang, F. Bioelectrochemistry 2019, 128, 193–203. https://doi.org/10.1016/j.bioelechem.2019.04.006.Suche in Google Scholar PubMed

34. Zhou, E., Li, H., Yang, C., Wang, J., Xu, D., Zhang, D., Gu, T. Int. Biodeterior. Biodegrad. 2018, 127, 1–9.10.1016/j.ibiod.2017.11.003Suche in Google Scholar

35. Deen, K. M., Yousaf, M., Afzal, N., Riaz, S., Naseem, S., Farooq, A., Ghauri, I. M. Mater. Technol. Adv. Perform. Mater. 2014, 29, 269–275. https://doi.org/10.1179/1753555714Y.0000000150.Suche in Google Scholar

36. Anandkumar, B., George, R. P., Tamilvani, S., Padhy, N., Mudali, U. K. Biofouling 2011, 27, 675–683. https://doi.org/10.1080/08927014.2011.597001.Suche in Google Scholar PubMed

37. Rajasekar, A., Ting, Y. P. Ind. Eng. Chem. Res. 2010, 49, 6054–6061. https://doi.org/10.1021/ie100078u.Suche in Google Scholar

38. Guo, Z., Liu, T., Cheng, Y. F., Guo, N., Yin, Y. Colloids Surf. B Biointerfaces 2017, 157, 157–165. https://doi.org/10.1016/j.colsurfb.2017.05.045.Suche in Google Scholar PubMed

39. Naik, U. C., Srivastava, S., Thakur, I. S. Environ. Sci. Pollut. Res. 2012, 19, 3005–3014. https://doi.org/10.1007/s11356-012-0811-6.Suche in Google Scholar PubMed

40. Dutta, A., Bhattacharyya, S., Kundu, A., Dutta, D., Das, A. K. Biophys. Chem. 2016, 217, 32–41. https://doi.org/10.1016/j.bpc.2016.07.006.Suche in Google Scholar PubMed

Received: 2022-05-31
Accepted: 2022-08-06
Published Online: 2023-01-11
Published in Print: 2023-02-23

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 14.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2022-0257/html
Button zum nach oben scrollen