Abstract
In this research work, the corrosion tendency of stainless steel 304 caused by the Pseudomonas aeruginosa ZK and Bacillus subtilis S1X bacterial strains is investigated. The topographical features of the biofilms achieved after 14 days of incubation at 37 °C were examined by means of scanning electron microscopy. Fourier transform infrared spectroscopic analysis of the extracellular polymeric substance was carried out to estimate the chemical composition of the biofilm. Electrochemical impedance spectroscopy and Tafel polarization test methods were applied to understand the in-situ corrosion tendency of the stainless steel 304 in the presence of P. aeruginosa ZK and B. subtilis S1X strains. Compared to the biofilm produced by the P. aeruginosa ZK, the extracellular polymeric substance in the B. subtilis S1X containing bacteria was found to be porous and non-uniform. The improved hydrophobicity and uniformity of the P. aeruginosa ZK containing biofilm retarded the corrosion of the underlying stainless steel 304 sample. Appreciably large resistance of the P. aeruginosa ZK biofilm (∼6.04 kΩ-cm2) and hindered charge transport (11.12 kΩ-cm2) were evident from the electrochemical impedance spectroscopy analysis. In support of these results, a large cathodic Tafel slope (0.2 V/decade) and low corrosion rate (1.69 μA cm−2) were corroborated by the inhibitive properties of the P. aeruginosa ZK containing biofilm. However, the localized corrosion of the substrate in the presence of B. subtilis S1X bacteria was caused by the porosity and non-homogeneity of the extracellular polymeric substance layer. The small charge transfer resistance, high dissolution rate and pitting of the surface under B. subtilis S1X biofilm were comparable to the corrosion properties of stainless steel 304 in a controlled medium. These results highlighted the poor corrosion inhibitive properties of the B. subtilis S1X biofilm compared to the P. aeruginosa ZK bacterial strain.
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: None declared.
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Videla, H. A., Herrera, L. K. Int. Microbiol. 2005, 8, 169–180.Suche in Google Scholar
2. Qu, Q., He, Y., Wang, L., Xu, H., Li, L., Chen, Y., Ding, Z. Corrosion Sci. 2015, 91, 321–329. https://doi.org/10.1016/j.corsci.2014.11.032.Suche in Google Scholar
3. Javaherdashti, R. Microbiologically Influenced Corrosion (MIC). In Microbiologically Influenced Corrosion. Engineering Materials and Processes; Springer: Cham, 2017. https://doi.org/10.1007/978-3-319-44306-5_4.10.1007/978-3-319-44306-5Suche in Google Scholar
4. Liu, H., Gu, T., Zhang, G., Wang, W., Dong, S., Cheng, Y., Liu, H. Corrosion Sci. 2016, 105, 149–160. https://doi.org/10.1016/j.corsci.2016.01.012.Suche in Google Scholar
5. Jia, R., Yang, D., Xu, D., Gu, T. Sci. Rep. 2017, 7, 1–11. https://doi.org/10.1038/s41598-017-07312-7.Suche in Google Scholar PubMed PubMed Central
6. Soltani, N., Tavakkoli, N., Kashani, M. K., Mosavizadeh, A., Oguzie, E., Jalali, M. J. Ind. Eng. Chem. 2014, 20, 3217–3227. https://doi.org/10.1016/j.jiec.2013.12.002.Suche in Google Scholar
7. Nagiub, A., Mansfeld, F. Electrochim. Acta 2002, 47, 2319–2333. https://doi.org/10.1016/S0013-4686(02)00082-8.Suche in Google Scholar
8. Gunasekaran, G., Chongdar, S., Gaonkar, S., Kumar, P. Corrosion Sci. 2004, 46, 1953–1967. https://doi.org/10.1016/j.corsci.2003.10.023.Suche in Google Scholar
9. San, N. O., Nazır, H., Dönmez, G. Corrosion Sci. 2014, 79, 177–183. https://doi.org/10.1016/j.corsci.2013.11.004.Suche in Google Scholar
10. Liu, H., Gu, T., Asif, M., Zhang, G., Liu, H. Corrosion Sci. 2017, 114, 102–111. https://doi.org/10.1016/j.corsci.2016.10.025.Suche in Google Scholar
11. Batmanghelich, F., Li, L., Seo, Y. Corrosion Sci. 2017, 121, 94–104. https://doi.org/10.1016/j.corsci.2017.03.008.Suche in Google Scholar
12. Xu, D., Li, Y., Gu, T. Bioelectrochemistry 2016, 110, 52–58. https://doi.org/10.1016/j.bioelechem.2016.03.003.Suche in Google Scholar PubMed
13. Li, S., Li, L., Qu, Q., Kang, Y., Zhu, B., Yu, D., Huang, R. Colloids Surf. B Biointerfaces 2019, 173, 139–147. https://doi.org/10.1016/j.colsurfb.2018.09.059.Suche in Google Scholar PubMed
14. Videla, H. A., Herrera, L. K. Int. Biodeterior. Biodegrad. 2009, 63, 896–900. https://doi.org/10.1016/j.ibiod.2009.02.002.Suche in Google Scholar
15. Zhang, D., Qian, H., Xiao, K., Zhou, F., Liu, Z., Li, X. Corros. Eng. Sci. 2016, 51, 285–290. https://doi.org/10.1080/1478422X.2015.1104062.Suche in Google Scholar
16. Javed, M. A., Stoddart, P. R., McArthur, S. L., Wade, S. A. Biofouling 2013, 29, 939–952. https://doi.org/10.1080/08927014.2013.820826.Suche in Google Scholar PubMed
17. Dubiel, M., Hsu, C. H., Chien, C. C. Appl. Environ. Microbiol. 2002, 68, 1440–1445. https://doi.org/10.1128/AEM.68.3.1440-1445.2002.Suche in Google Scholar PubMed PubMed Central
18. Wadood, H. Z., Rajasekar, A., Ting, Y. P., Sabari, A. N. Arabian J. Sci. Eng. 2015, 40, 1825–1836. https://doi.org/10.1007/s13369-015-1590-4.Suche in Google Scholar
19. Rajasekar, A., Ting, Y. P. Ind. Eng. Chem. Res. 2011, 50, 12534–12541. https://doi.org/10.1021/ie200602a.Suche in Google Scholar
20. Wu, J. J., Zhang, D., Wang, P., Cheng, Y., Sun, M., Chen, S. Q. Corrosion Sci. 2016, 116, 552–562. https://doi.org/10.1016/j.corsci.2016.04.047.Suche in Google Scholar
21. Liu, T., Wang, Y., Pan, S., Zhao, Q., Zhang, C., Gao, S., Guo, Z., Guo, N., Sand, W., Chang, X., Dong, L., Yina, Y. Corrosion Sci. 2019, 149, 153–163. https://doi.org/10.1016/j.corsci.2019.01.010.Suche in Google Scholar
22. Moradi, M., Song, Z., Yang, L., Jiang, J., He, J. Corrosion Sci. 2014, 84, 103–112. https://doi.org/10.1016/j.corsci.2014.03.018.Suche in Google Scholar
23. Wadood, H. Z., Sabri, A. N. Pol. J. Microbiol. 2013, 62, 411–418. https://doi.org/10.1002/jobm.200800212.Suche in Google Scholar PubMed
24. Rosenberg, M. FEMS Microbiol. Lett. 1984, 22, 289–295. https://doi.org/10.1111/j.1574-6968.1984.tb00743.x.Suche in Google Scholar
25. Basson, A., Flemming, L., Chenia, H. Microb. Ecol. 2008, 55, 1–14. https://doi.org/10.1007/s00248-007-9245-y.Suche in Google Scholar PubMed
26. Wadood, H. Z., Rajasekar, A., Farooq, A., Ting, Y. P., Sabri, A. N. J. Basic Microbiol. 2020, 60, 243–252. https://doi.org/10.1002/jobm.201900489.Suche in Google Scholar PubMed
27. An, Y. H., Friedman, R. J., Eds. Handbook of Bacterial Adhesion: Principles, Methods, and Applications; Humana Press Inc.: Totowa, New Jersey, 2000; pp. 53–72.10.1385/1592592244Suche in Google Scholar
28. Kang, C. K., Lee, Y. S. J. Mater. Sci. Mater. Med. 2007, 18, 1389–1398. https://doi.org/10.1007/s10856-006-0079-9.Suche in Google Scholar PubMed
29. Krasowska, A., Sigler, K. Front. Cell. Infect. Microbiol. 2014, 4, 112. https://doi.org/10.3389/fcimb.2014.00112.Suche in Google Scholar PubMed PubMed Central
30. Mirani, Z. A., Fatima, A., Urooj, S., Aziz, M., Khan, M. N., Abbas, T. Iran. J. Basic Med. Sci. 2018, 21, 760. https://doi.org/10.22038/IJBMS.2018.28525.6917.Suche in Google Scholar PubMed PubMed Central
31. Lodhi, M., Deen, K., Rahman, Z. U., Farooq, A., Haider, W. J. Ind. Eng. Chem. 2018, 65, 180–187. https://doi.org/10.1016/j.jiec.2018.04.027.Suche in Google Scholar
32. Chen, S., Zhang, D. Corrosion Sci. 2018, 136, 275–284. https://doi.org/10.1016/j.corsci.2018.03.017.Suche in Google Scholar
33. Lekbach, Y., Li, Z., Xu, D., El Abed, S., Dong, Y., Liu, D., Gu, T., Koraichi, S. I., Yang, K., Wang, F. Bioelectrochemistry 2019, 128, 193–203. https://doi.org/10.1016/j.bioelechem.2019.04.006.Suche in Google Scholar PubMed
34. Zhou, E., Li, H., Yang, C., Wang, J., Xu, D., Zhang, D., Gu, T. Int. Biodeterior. Biodegrad. 2018, 127, 1–9.10.1016/j.ibiod.2017.11.003Suche in Google Scholar
35. Deen, K. M., Yousaf, M., Afzal, N., Riaz, S., Naseem, S., Farooq, A., Ghauri, I. M. Mater. Technol. Adv. Perform. Mater. 2014, 29, 269–275. https://doi.org/10.1179/1753555714Y.0000000150.Suche in Google Scholar
36. Anandkumar, B., George, R. P., Tamilvani, S., Padhy, N., Mudali, U. K. Biofouling 2011, 27, 675–683. https://doi.org/10.1080/08927014.2011.597001.Suche in Google Scholar PubMed
37. Rajasekar, A., Ting, Y. P. Ind. Eng. Chem. Res. 2010, 49, 6054–6061. https://doi.org/10.1021/ie100078u.Suche in Google Scholar
38. Guo, Z., Liu, T., Cheng, Y. F., Guo, N., Yin, Y. Colloids Surf. B Biointerfaces 2017, 157, 157–165. https://doi.org/10.1016/j.colsurfb.2017.05.045.Suche in Google Scholar PubMed
39. Naik, U. C., Srivastava, S., Thakur, I. S. Environ. Sci. Pollut. Res. 2012, 19, 3005–3014. https://doi.org/10.1007/s11356-012-0811-6.Suche in Google Scholar PubMed
40. Dutta, A., Bhattacharyya, S., Kundu, A., Dutta, D., Das, A. K. Biophys. Chem. 2016, 217, 32–41. https://doi.org/10.1016/j.bpc.2016.07.006.Suche in Google Scholar PubMed
© 2022 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Review
- Preparations and applications of organic conducting polymers/graphene composites in heavy metal ion sensing: a review
- Original Papers
- Complex dielectric, electric modulus, impedance, and optical conductivity of Sr3−x Pb x Fe2TeO9 (x = 1.50, 1.88 and 2.17)
- Complex permittivity and predominance of non-overlapping small-polaron tunneling conduction process in copper indium selenide compound
- Effect of Bacillus and Pseudomonas biofilms on the corrosion behavior of AISI 304 stainless steel
- Fabrication of magnesium oxide nanoparticles using Eucalyptus tereticornis seed extract and their characterisation
- Greener route for synthesis of cerium oxide and Fe-doped cerium oxide nanoparticles using acacia concinna fruit extract
- Phase equilibria of Ni–Al–Pd and Ni–Cr–Pd ternary systems and Ni–Al–Cr–Pd quaternary system at 1423 K
- Effect of grain size on oxidation behaviour of Ag-20Cu-30Cr alloys in 0.1 MPa pure O2 at 700 and 800 °C
- News
- DGM – Deutsche Gesellschaft für Materialkunde
Artikel in diesem Heft
- Frontmatter
- Review
- Preparations and applications of organic conducting polymers/graphene composites in heavy metal ion sensing: a review
- Original Papers
- Complex dielectric, electric modulus, impedance, and optical conductivity of Sr3−x Pb x Fe2TeO9 (x = 1.50, 1.88 and 2.17)
- Complex permittivity and predominance of non-overlapping small-polaron tunneling conduction process in copper indium selenide compound
- Effect of Bacillus and Pseudomonas biofilms on the corrosion behavior of AISI 304 stainless steel
- Fabrication of magnesium oxide nanoparticles using Eucalyptus tereticornis seed extract and their characterisation
- Greener route for synthesis of cerium oxide and Fe-doped cerium oxide nanoparticles using acacia concinna fruit extract
- Phase equilibria of Ni–Al–Pd and Ni–Cr–Pd ternary systems and Ni–Al–Cr–Pd quaternary system at 1423 K
- Effect of grain size on oxidation behaviour of Ag-20Cu-30Cr alloys in 0.1 MPa pure O2 at 700 and 800 °C
- News
- DGM – Deutsche Gesellschaft für Materialkunde