Home The influence of SrCl2 on the corrosion behavior of magnesium
Article
Licensed
Unlicensed Requires Authentication

The influence of SrCl2 on the corrosion behavior of magnesium

  • Fuyong Cao EMAIL logo , Jing Zhang , Xin Song , Jinhua Chen , Tao Ying and Guang-Ling Song ORCID logo EMAIL logo
Published/Copyright: April 15, 2022
Become an author with De Gruyter Brill

Abstract

The influence of SrCl2 on the corrosion behavior of magnesium (Mg) in 3.5 wt.% NaCl was evaluated by immersion testing, electrochemical measurement and the examination of the corrosion morphology. A small addition of SrCl2 decreased the corrosion rate of Mg. In contrast, an excess of SrCl2 increased the corrosion rate of Mg, even higher than that in 3.5 wt.% NaCl. There is a competition effect of the SrCl2 on the corrosion behavior of Mg in 3.5 wt.% NaCl. The Sr2+ can improve the protection of corrosion product film through the formation of SrCO3. While the Cl can damage the protection of the corrosion product film. The Mg specimen achieved the best corrosion resistance in 3.5 wt.% NaCl + 0.005 mol L−1 SrCl2.


Corresponding authors: Fuyong Cao, Center for Marine Materials Corrosion and Protection, College of Materials, Xiamen University, 422 Siming Road, Siming District, Xiamen, Fujian, P.R. China, E-mail: ; and Guang-Ling Song, Center for Marine Materials Corrosion and Protection, College of Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, 422 Siming Road, Siming District, Xiamen, Fujian, P.R. China; College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, P.R. China; and Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P.R. China, E-mail: ,

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This research was supported by National Natural Science Foundation of China No. 51801168 and No. 51731008.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Atrens, A., Liu, M., Zainal Abidin, N. I. Mater. Sci. Eng. B 2011, 176, 1609–1636. https://doi.org/10.1016/j.mseb.2010.12.017.Search in Google Scholar

2. Witte, F. Acta Biomater. 2010, 6, 1680–1692. https://doi.org/10.1016/j.actbio.2010.02.028.Search in Google Scholar PubMed

3. Abbott, T. Corrosion 2015, 71, 120–127. https://doi.org/10.5006/1474.Search in Google Scholar

4. Esmaily, M., Svensson, J. E., Fajardo, S., Birbilis, N., Frankel, G. S., Virtanen, S., Arrabal, R., Thomas, S., Johansson, L. G. Prog. Mater. Sci. 2017, 89, 92–193. https://doi.org/10.1016/j.pmatsci.2017.04.011.Search in Google Scholar

5. Huang, J. F., Song, G. L., Atrens, A., Dargusch, M. J. Mater. Sci. Technol. 2020, 57, 204–220. https://doi.org/10.1016/j.jmst.2020.03.060.Search in Google Scholar

6. Birbilis, N., King, A., Thomas, S., Frankel, G., Scully, J. Electrochim. Acta 2014, 132, 277–283.10.1016/j.electacta.2014.03.133Search in Google Scholar

7. Cao, F., Shi, Z., Hofstetter, J., Uggowitzer, P. J., Song, G., Liu, M., Atrens, A. Corrosion Sci. 2013, 75, 78–99. https://doi.org/10.1016/j.corsci.2013.05.018.Search in Google Scholar

8. Liu, H., Cao, F., Song, G.-L., Zheng, D., Shi, Z., Dargusch, M. S., Atrens, A. J. Mater. Sci. Technol. 2019, 35, 2003–2016. https://doi.org/10.1016/j.jmst.2019.05.001.Search in Google Scholar

9. Yu, R. H., Cao, F. Y., Zhao, C., Yao, J. H., Wang, J. J., Wang, Z. M., Zou, Z. W., Zheng, D. J., Cai, J. L., Song, G. L. Corros. Eng. Sci. Technol. 2020, 55, 609–621. https://doi.org/10.1080/1478422x.2020.1768643.Search in Google Scholar

10. Cao, F., Song, G.-L., Atrens, A. Corrosion Sci. 2016, 111, 835–845. https://doi.org/10.1016/j.corsci.2016.05.041.Search in Google Scholar

11. Cao, F., Shi, Z., Song, G.-L., Liu, M., Atrens, A. Corrosion Sci. 2013, 76, 60–97. https://doi.org/10.1016/j.corsci.2013.06.030.Search in Google Scholar

12. Cheng, M., Chen, J., Yan, H., Su, B., Yu, Z., Xia, W., Gong, X. J. Alloys Compd. 2017, 691, 95–102. https://doi.org/10.1016/j.jallcom.2016.08.164.Search in Google Scholar

13. Sadeghi, A., Hasanpur, E., Bahmani, A., Shin, K. S. Corrosion Sci. 2018, 141, 117–126. https://doi.org/10.1016/j.corsci.2018.06.018.Search in Google Scholar

14. Liu, S. F., Liu, L. Y., Kang, L. G. J. Alloys Compd. 2008, 450, 546–550. https://doi.org/10.1016/j.jallcom.2007.07.053.Search in Google Scholar

15. Meng, X., Jiang, Z., Zhu, S., Guan, S. J. Alloys Compd. 2020, 838, 155611. https://doi.org/10.1016/j.jallcom.2020.155611.Search in Google Scholar

16. Tian, Q., Zhang, C., Deo, M., Rivera-Castaneda, L., Masoudipour, N., Guan, R., Liu, H. Mater. Sci. Eng. C 2019, 96, 248–262. https://doi.org/10.1016/j.msec.2018.11.018.Search in Google Scholar

17. Marie, P. J. Osteoporos. Int. 2005, 16, S7–S10. https://doi.org/10.1007/s00198-004-1753-8.Search in Google Scholar

18. Bornapour, M., Celikin, M., Cerruti, M., Pekguleryuz, M. Mater. Sci. Eng. C 2014, 35, 267–282. https://doi.org/10.1016/j.msec.2013.11.011.Search in Google Scholar

19. Chen, G., Peng, X., Fan, P., Xie, W., Wei, Q., Ma, H., Yang, Y. Trans. Nonferrous Metals Soc. China 2011, 21, 725–731. https://doi.org/10.1016/S1003-6326(11)60772-3.Search in Google Scholar

20. Ke, C., Song, M.-S., Zeng, R.-C., Qiu, Y., Zhang, Y., Zhang, R.-F., Liu, R.-L., Cole, I., Birbilis, N., Chen, X.-B.. Corrosion Sci. 2019, 151, 143–153. https://doi.org/10.1016/j.corsci.2019.02.024.Search in Google Scholar

21. Amaravathy, P., Kumar, T. S. S. J. Magnes. Alloy. 2019, 7, 584–596. https://doi.org/10.1016/j.jma.2019.05.014.Search in Google Scholar

22. Cao, F., Zhao, C., You, J., Hu, J., Zheng, D. J., Song, G. L. Adv. Eng. Mater. 2019, 21, 1900363. https://doi.org/10.1002/adem.201900363.Search in Google Scholar

23. Zhang, T., Chen, C., Shao, Y., Meng, G., Wang, F., Li, X., Dong, C. Electrochim. Acta 2008, 53, 7921–7931. https://doi.org/10.1016/j.electacta.2008.05.074.Search in Google Scholar

24. Cao, F., Zhao, C., Song, G.-L., Zheng, D. Corrosion Sci. 2019, 150, 161–174. https://doi.org/10.1016/j.corsci.2019.01.042.Search in Google Scholar

25. Cao, F., Shi, Z., Song, G.-L., Liu, M., Dargusch, M. S., Atrens, A.. Corrosion Sci. 2015, 94, 255–269 https://doi.org/10.1016/j.corsci.2015.02.002.Search in Google Scholar

26. Brady, M. P., Rother, G., Anovitz, L. M., Littrell, K. C., Unocic, K. A., Elsentriecy, H. H., Song, G. L., Thomson, J. K., Gallego, N. C., Davis, B. J. Electrochem. Soc. 2015, 162, C140–C149. https://doi.org/10.1149/2.0171504jes.Search in Google Scholar

27. Zhang, B., Wang, J., Wu, B., Guo, X. W., Wang, Y. J., Chen, D., Zhang, Y. C., Du, K., Oguzie, E. E., Ma, X. L. Nat. Commun. 2018, 9, 2559. https://doi.org/10.1038/s41467-018-04942-x.Search in Google Scholar PubMed PubMed Central

28. Song, G., StJohn, D. Corrosion Sci. 2004, 46, 1381–1399. https://doi.org/10.1016/j.corsci.2003.10.008.Search in Google Scholar

29. Cain, T. W., Gonzalez-Afanador, I., Birbilis, N., Scully, J. R. J. Electrochem. Soc. 2017, 164, C300–C311. https://doi.org/10.1149/2.1371706jes.Search in Google Scholar

Received: 2021-04-30
Revised: 2022-03-06
Accepted: 2022-02-14
Published Online: 2022-04-15
Published in Print: 2022-05-26

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Articles in the same Issue

  1. Frontmatter
  2. Editorial
  3. Preface of the issue of the 19th national symposium on phase diagram and materials design
  4. Review
  5. Improvement of the thermoelectric properties of GeTe- and SnTe-based semiconductors aided by the engineering based on phase diagram
  6. Original Papers
  7. Diffusivities and atomic mobilities in the Ni-rich fcc Ni–Al–Cu alloys: experiment and modeling
  8. Composition-dependent interdiffusivity matrices of ordered bcc_B2 phase in ternary Ni–Al–Ru system at 1273∼1473 K
  9. Investigation of interdiffusion behavior in the Ti–Zr–Cu ternary system
  10. Measurement of the diffusion coefficient in Mg–Sn and Mg–Sc binary alloys
  11. Thermodynamic calculation of phase equilibria of rare earth metals with boron binary systems
  12. Thermodynamic modeling of the Bi–Ca and Bi–Zr systems
  13. Redetermination of the Fe–Pt phase diagram by using diffusion couple technique combined with key alloys
  14. Experimental determination of the isothermal sections and liquidus surface projection of the Mo–Si–V ternary system
  15. Experimental determination of isothermal sections of the Hf–Nb–Ni system at 950 and 1100 °C
  16. Experimental investigation and thermodynamic assessment of the Al–Ca–Y ternary system
  17. Phase equilibria of the Ni–Cr–Y ternary system at 900 °C
  18. Phase constituents near the center of the Co–Cr–Fe–Ni–Ti system at 1000 °C
  19. Metastable phase diagram of the Gd2O3–SrO–CoO x ternary system
  20. Crystallization kinetic and dielectric properties of CaO–MgO–Al2O3–SiO2 glass/Al2O3 composites
  21. Investigation of the phase relation of the Bi2O3–Fe2O3–Nd2O3 system at 973 K and the microwave absorption performance of NdFeO3/Bi25FeO40 with different mass ratios
  22. The influence of SrCl2 on the corrosion behavior of magnesium
  23. Retraction
  24. Retraction of: Electrolytic synthesis of ZrSi/ZrC nanocomposites from ZrSiO4 and carbon black powder in molten salt
  25. News
  26. DGM – Deutsche Gesellschaft für Materialkunde
Downloaded on 29.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2021-8334/html?lang=en
Scroll to top button