Startseite Effect of hydrogen, and vapors of water and organic compounds on the structure of Sr2CuO3
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Effect of hydrogen, and vapors of water and organic compounds on the structure of Sr2CuO3

  • Igor B. Bobylev , Sergey V. Naumov EMAIL logo und Natalia A. Zyuzeva
Veröffentlicht/Copyright: 28. Juli 2021
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The effect of hydrogen, and vapors of water and the simplest organic compounds of various classes on the structure of strontium orthocuprate (Sr2CuO3) in the temperature range of 150–300 °C has been investigated. At temperatures up to 200 °C, hydrogen and water are embedded in the structure of Sr2CuO3 from the annealing atmosphere. Under these conditions, organic compounds are oxidized to form water followed by hydration of Sr2CuO3. It has been revealed that Sr2CuO3 is a catalyst for oxidation reactions. Water absorption > 2 wt.% provokes hydrolytic decomposition of Sr2CuO3 with the formation of strontium hydroxide and copper-richer cuprates (SrCuO2 and SrCu2O3). At a temperature of 300 °C, organic compounds partially reduce copper, which is also the cause of the decomposition of Sr2CuO3.


Dr. Sergey V. Naumov M.N. Mikheev Institute of Metal PhysicsUral Branch of RAS (IMP UB RAS) S. Kovalevskaja Str, 18 Ekaterinburg, 920108 Russia Tel.: +7 (343) 378-35-47 Web: www.imp.uran.ru

Funding statement: The research was carried out within the state assignment of Ministry of Science and Higher Education of the Russian Federation (theme “Pressure” No. AAAA-A18-118020190104-3 and theme “Spin” No. AAAA-A18-118020290104-2)

References

[1] T. Hirata: Phys. Status Solidi A 156 (1996) 227. DOI:10.1002/pssa.221156020210.1002/pssa.2211560202Suche in Google Scholar

[2] R. Zhao, M.J. Goringe, S. Myhra, P.S. Turner: Philos. Mag. A 66 (1992) 491. DOI:10.1080/0141861920820157110.1080/01418619208201571Suche in Google Scholar

[3] W. Günther, R. Schollhorn, M. Epple, H. Siegle, Ch. Thomsen, B. Kabius, U. Poppe, J. Schubert, W. Zander: Philos. Mag. A 79 (1999) 449. DOI:10.1080/0141861990821030910.1080/01418619908210309Suche in Google Scholar

[4] I.B. Bobylev, E.G. Gerasimov, N.A. Zyuzeva: Cryogenics 72 (2015) 36. DOI:10.1016/j.cryogenics.2015.08.00310.1016/j.cryogenics.2015.08.003Suche in Google Scholar

[5] T. Motoki, Y. Yanai, K. Nunokava, S. Gondo, S. Nakamura, J. Shimoyama: Supercond. Sci. Tech. 33 (2020) 034008. DOI:10.1088/1361-6668/ab6ec210.1088/1361-6668/ab6ec2Suche in Google Scholar

[6] N.A. Zyuzeva, I.B. Bobylev, S.V. Naumov, E.P. Romanov: Phys. Met. Metallogr. 115 (2014) 547. DOI:10.1134/S0031918X1406015510.1134/S0031918X14060155Suche in Google Scholar

[7] I.B. Bobylev, S.V. Naumov, N.A. Zyuzeva, S.V. Telegin: Phys. Met. Metallogr. 119 (2018) 1175. DOI:10.1134/S0031918X1812004910.1134/S0031918X18120049Suche in Google Scholar

[8] I.B. Bobylev, S.V. Naumov, N.A. Zyuzeva: Phys. Solid State 58 (2016) 1744. DOI:10.1134/S106378341609011010.1134/S1063783416090110Suche in Google Scholar

[9] G.H. Wang, G.G. Pang, C.L. Luo, S.Z. Yang, Y. Li, Z.M. Ji, Z.J. Sun: Phys. Lett. A 130 (1988) 405. DOI:10.1016/0375-9601(88)90237-X10.1016/0375-9601(88)90237-XSuche in Google Scholar

[10] C.Y. Yang, X.-Q. Yang, S.M. Heald, J.J. Reilly, T. Skotheim, A.R. Moodenbaugh, M. Suenaga: Phys. Rev. B 36 (1987) 8798. PMid:9942711; DOI:10.1103/PhysRevB.36.879810.1103/PhysRevB.36.8798Suche in Google Scholar PubMed

[11] I.B. Bobylev, Yu.S. Ponosov, N.A. Zyuzeva: Mater. Chem. Phys. 167 (2015) 1. DOI:10.1016/j.matchemphys.2015.10.04610.1016/j.matchemphys.2015.10.046Suche in Google Scholar

[12] Yu.S. Ponosov, I.B. Bobylev, N.A. Zyuzeva: JETP Lett. 99 (2014) 340. DOI:10.1134/S002136401406011310.1134/S0021364014060113Suche in Google Scholar

[13] I.B. Bobylev, N.A. Zyuzeva, S.V. Naumov: Philos. Mag. 99 (2019) 1928. DOI:10.1080/14786435.2019.160521810.1080/14786435.2019.1605218Suche in Google Scholar

[14] I.B. Bobylev, N.A. Zyuzeva, S.V. Naumov: Russ. J. Phys. Chem. A 93 (2019) 2465. DOI:10.1134/S003602441912004510.1134/S0036024419120045Suche in Google Scholar

[15] R. Neudert, S.-L. Drechsler, J. Ma’lek, H. Rosner, M. Kielwein, Z. Hu, M. Knupfer, M.S. Golden, J. Fink, N. Nücker, M. Merz, S. Schuppler, N. Motoyama, H. Eisaki, S. Uchida, M. Domke, G. Kaindl: Phys. Rev. B 62, (2000) 10752. DOI:10.1103/PhysRevB.62.1075210.1103/PhysRevB.62.10752Suche in Google Scholar

[16] Z. Hiroi, M. Takano, M. Azuma, Y. Takeda: Letters to Nature 364 (1993) 315. DOI:10.1038/364315a010.1038/364315a0Suche in Google Scholar

[17] W. Kraus, G. Nolze: J. Appl. Crystallogr. 29 (1996) 301. DOI:10.1107/S002188989501492010.1107/S0021889895014920Suche in Google Scholar

[18] https://materials.springer.com/Suche in Google Scholar

[19] A.S. Moskvin, J. Málek, M. Knupfer, R. Neudert, J. Fink, R. Hayn, S.-L. Drechsler, N. Motoyama, H. Eisaki, S. Uchida: Phys. Rev. Lett. 91, (2003) 037001. PMid:12906439; DOI:10.1103/PhysRevLett.91.03700110.1103/PhysRevLett.91.037001Suche in Google Scholar

[20] A.M. Balagurov, G.M. Mironova, L.A. Rudnickij, V.Yu. Galkin: Physica C 172 (1990) 331. DOI:10.1016/0921-4534(90)90624-N10.1016/0921-4534(90)90624-NSuche in Google Scholar

[21] C.Y. Yang, S.M. Heald, M.W. Ruckman, J.J. Reilly, M. Suenaga: Physica B: 158 (1989) 484. DOI:10.1016/0921-4526(89)90357-810.1016/0921-4526(89)90357-8Suche in Google Scholar

[22] V.A. Zelenskij, M.I. Alymov, A.B. Ankudimov, I.V. Tregubova: Perspectivnye materially 6 (2009) 83 (in Russian).Suche in Google Scholar

[23] J.-S. Zhou: Phys. Rev. B 101 (2020) 224104 DOI:https://doi.org/10.1103/PhysRevB.101.224104.DOI:10.1103/PhysRevB.101.22410410.1103/PhysRevB.101.224104Suche in Google Scholar

[24] M. Al-Mamouri, P.P. Edwards, C. Greaves, M. Slaski: Nature 369 (1994) 382. DOI: https://doi.org/10.1038/369382a0.DOI:10.1038/369382a010.1038/369382a0Suche in Google Scholar

[25] J.K. Burdett: J. Phys. Chem. 100 (1996) 13263. DOI:10.1021/jp953650b10.1021/jp953650bSuche in Google Scholar

[26] L. Fieser, M. Fieser: Advanced Organic Chemistry, Reinhold Publishing Corporation, New York (1964). DOI:10.1021/jo01027a00210.1021/jo01027a002Suche in Google Scholar

[27] E.V. Boikov, M.V. Vishnetskaya, A.N. Emel’yanov, Yu.N. Rufov, N.V. Shcherbakov, I.S. Tomskii: Russ. J. Phys. Chem. A 81 (2007) 861. DOI:10.1134/S003602440706005210.1134/S0036024407060052Suche in Google Scholar

[28] T.A. Ivanova, I. Jacyna-Onyszkiewicz, M.A. Augustyniak-Yablo-kova, Yu.V. Yablokov, V.A. Shustov: Phys. Solid State 47 (2005) 1540. DOI:10.1134/1.201451010.1134/1.2014510Suche in Google Scholar

[29] B.-H. Chen, D. Walker, B.A. Scott, D.B. Mitzi: J. Solid State Chem. 121 (1996) 498. DOI:10.1006/jssc.1996.007010.1006/jssc.1996.0070Suche in Google Scholar

Received: 2020-08-04
Accepted: 2021-04-15
Published Online: 2021-07-28
Published in Print: 2021-07-31

© 2021 Walter de Gruyter GmbH, Berlin/Boston, Germany

Heruntergeladen am 22.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2020-8021/html
Button zum nach oben scrollen