Abstract
The energy absorption characteristics of hexagonally packaged circular-celled honeycombs and quadrilater-ally packaged circular-celled honeycombs are obtained under in-plane quasi-static compressive loadings through finite element analysis. The stress–strain curves, deformation modes, energy absorption efficiency, specific plateau stress, normalized energy absorption and energy absorption diagrams are discussed. The cell arrangement patterns influence the shapes of stress–strain curves and deformation modes. The densification strain is in linear relationship with the relative density and the specific plateau stress is proportional to relative density. The hexagonally packaged circular-celled honeycombs have the largest specific plateau stress in the x2 direction for a given relative density. The normalized energy absorption is nearly proportional to the strain before densification and increases with increasing relative density for a given strain in one compression direction. The envelope line in the energy absorption diagram is approximately a straight line tangent to the shoulder points through the origin. The hexagonally packaged circular-celled honeycombs outperform the quadrilaterally packaged circular-celled honeycombs in in-plane energy absorption.
Funding statement: This work is funded by the National Natural Science Foundation of China (51575327), the Program for Innovative Talents Promotion of Shaanxi Province (2017 KCT-02), and the Key Laboratory Research Project of Education Department of Shaanxi (16JS014). The authors declare that they have no conflict of interest.
References
[1] F. Meraghni, F. Desrumaux, M.L. Benzeggagh: Composites, Part A. 30 (1999) 767. DOI:10.1016/S1359-835X(98)00182-110.1016/S1359-835X(98)00182-1Suche in Google Scholar
[2] J. Chung, A.M. Waas: Acta Mech.144 (2000) 29. DOI:10.1007/BF0118182610.1007/BF01181826Suche in Google Scholar
[3] J. Chung, A.M. Waas: Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 465 (2009) 25. RSPA.2008.0225. DOI:10.1098/10.1098/Suche in Google Scholar
[4] T.C. Lin, T.J. Chen, J.S. Huang: Compos. Sci. Technol. 72 (2012) 1380. DOI:10.1016/j.compscitech.2012.05.00910.1016/j.compscitech.2012.05.009Suche in Google Scholar
[5] T.C. Lin, J.S. Huang: Compos. Struct. 104 (2013) 14. DOI:10.1016/j.compstruct.2013.04.01510.1016/j.compstruct.2013.04.015Suche in Google Scholar
[6] T.C. Lin, T.J. Chen, J.S. Huang: Compos. Struct.106 (2013) 799. DOI:10.1016/j.compstruct.2013.07.03010.1016/j.compstruct.2013.07.030Suche in Google Scholar
[7] A. Cernescu, J. Romanoff, H. Remes, N. Faur, J. Jelovica: Com-pos. Struct. 108 (2014) 866. DOI:10.1016/j.compstruct.2013.10.01710.1016/j.compstruct.2013.10.017Suche in Google Scholar
[8] T.P. Gotkhindi, K.R.Y. Simha: Compos. Struct. 134 (2015) 311. DOI:10.1016/j.compstruct.2015.08.06610.1016/j.compstruct.2015.08.066Suche in Google Scholar
[9] T.P. Gotkhindi, K.R.Y. Simha: Int. J. Mech. Sci. 101–102 (2015) 292. DOI:10.1016/j.ijmecsci.2015.08.00910.1016/j.ijmecsci.2015.08.009Suche in Google Scholar
[10] D. Karagiozova, T.X. Yu: Int. J. Impact Eng. 112 (2018) 74. DOI:10.1016/j.ijimpeng.2017.10.00610.1016/j.ijimpeng.2017.10.006Suche in Google Scholar
[11] S.D. Papka, S. Kyriakides: Int. J. Solids Struct. 35 (1998) 239. DOI:10.1016/S0020-7683(97)00062-010.1016/S0020-7683(97)00062-0Suche in Google Scholar
[12] J. Chung, A.M. Waas, in: AIAA-1999–1358, AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference and Exhibit, Collection of Technical Papers, Vol. 2, MO, Louis (1999) 5. DOI:10.2514/6.1999-135810.2514/6.1999-1358Suche in Google Scholar
[13] J. Chung, A.M. Waas: J. Eng. Mater. Technol. 121 (1999) 494. DOI:10.1115/1.281240710.1115/1.2812407Suche in Google Scholar
[14] J. Chung, A.M. Waas, in: AIAA-2001–1187, AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference and Exhibit, WA, Seattle (2001) 16. DOI:10.2514/6.2001-118710.2514/6.2001-1187Suche in Google Scholar
[15] S.D. Papka, S. Kyriakides: Int. J. Solids Struct. 36 (1999) 4367. DOI:10.1016/S0020-7683(98)00224-810.1016/S0020-7683(98)00224-8Suche in Google Scholar
[16] S.D. Papka, S. Kyriakides: Int. J. Solids Struct. 36 (1999) 4397. DOI:10.1016/S0020-7683(98)00225-X10.1016/S0020-7683(98)00225-XSuche in Google Scholar
[17] J. Chung, A.M. Waas: J. Eng. Mech. 27 (2001) 180. DOI:10.1061/(ASCE)0733-9399(2001)127: 2(180)10.1061/(ASCE)0733-9399(2001)127:2(180)Suche in Google Scholar
[18] J. Chung, A.M. Waas: Int. J. Impact Eng. 27 (2002) 729. DOI:10.1016/S0734-743X(02)00011-810.1016/S0734-743X(02)00011-8Suche in Google Scholar
[19] J. Chung, A.M. Waas: Int. J. Impact Eng. 27 (2002) 1015. DOI:10.1016/S0734-743X(02)00012-X10.1016/S0734-743X(02)00012-XSuche in Google Scholar
[20] K. Tantikom, T. Aizawa, T. Mukai: Int. J. Solids Struct. 42 (2005) 2199. DOI:10.1016/j.ijsolstr.2004.09.02810.1016/j.ijsolstr.2004.09.028Suche in Google Scholar
[21] K. Tantikom, T. Aizawa, T. Mukai: Int. J. Solids Struct. 42 (2005) 2211. DOI:10.1016/j.ijsolstr.2004.09.02710.1016/j.ijsolstr.2004.09.027Suche in Google Scholar
[22] D. Karagiozova, T.X. Yu: Int. J. Mech. Sci. 47 (2005) 570. DOI:10.1016/j.ijmecsci.2004.11.01110.1016/j.ijmecsci.2004.11.011Suche in Google Scholar
[23] D. Karagiozova, T.X. Yu: Int. J. Impact Eng. 35 (2008) 753. DOI:10.1016/j.ijimpeng.2007.11.00110.1016/j.ijimpeng.2007.11.001Suche in Google Scholar
[24] Y. Liu, X.C. Zhang: Int. J. Impact Eng. 36 (2009) 98. DOI:10.1016/j.ijimpeng.2008.03.00110.1016/j.ijimpeng.2008.03.001Suche in Google Scholar
[25] X.M. Qiu, J. Zhang, T.X. Yu: Int. J. Impact Eng. 36 (2009) 1223. DOI:10.1016/j.ijimpeng.2009.05.01110.1016/j.ijimpeng.2009.05.011Suche in Google Scholar
[26] X.M. Qiu, J. Zhang, T.X. Yu: Int. J. Impact Eng. 36 (2009) 1231. DOI:10.1016/j.ijimpeng.2009.05.01010.1016/j.ijimpeng.2009.05.010Suche in Google Scholar
[27] L.L. Hu, T.X. Yu, Z.Y. Gao, X.Q. Huang: Int. J. Mech. Sci. 50 (2008) 1224. DOI:10.1016/j.ijmecsci.2008.03.00410.1016/j.ijmecsci.2008.03.004Suche in Google Scholar
[28] T.X. Yu, Z.Y. Gao, L.L. Hu: Int. J. Prot. Struct. 2 (2011) 381. DOI:10.1260/2041-4196.2.4.38110.1260/2041-4196.2.4.381Suche in Google Scholar
[29] D. Sun, W. Zhang, Y. Zhao, G. Li, Y. Xing, G. Gong: Compos. Struct. 96 (2013) 726. DOI:10.1016/j.compstruct.2012.10.00810.1016/j.compstruct.2012.10.008Suche in Google Scholar
[30] D. Sun, G. Li, Y. Sun: Sci. Prog. 103 (2019) 1. DOI:10.1177/003685041987902810.1177/0036850419879028Suche in Google Scholar PubMed
[31] Q.C. Wang, Z.J. Fan: Mech. Eng. 25 (2003) 20 (in Chinese). DOI:10.6052/1000-0992-2001-49810.6052/1000-0992-2001-498Suche in Google Scholar
[32] C.R. Calladine, R.W. English: Int. J. Mech. Sci. 26 (1984) 689. DOI:10.1016/0020-7403(84)90021-310.1016/0020-7403(84)90021-3Suche in Google Scholar
[33] Q. Liu, J. Fu, J. Wang, J. Ma, H. Chen, Q. Li, D. Hui: Composites, Part B 130 (2017) 236. DOI:10.1016/j.compositesb.2017.07.04110.1016/j.compositesb.2017.07.041Suche in Google Scholar
[34] M. Avalle, G. Belingardi, R. Montanini: Int. J. Impact Eng. 25 (2001) 455. DOI:10.1016/S0734-743X(00)00060-910.1016/S0734-743X(00)00060-9Suche in Google Scholar
[35] L.J. Gibson, M.F. Ashby: Cellular Solids: Structure and Properties, Cambridge University Press, Cambridge (1997). DOI:10.1017/CBO978113987832610.1017/CBO9781139878326Suche in Google Scholar
[36] S.K. Maiti, L.J. Gibson, M.F. Ashby: Acta Metall. 32 (1984) 1963. DOI:10.1016/0001-6160(84)90177-910.1016/0001-6160(84)90177-9Suche in Google Scholar
[37] S. Rao, R. Das, D. Bhattacharyya: Composites, Part A 45 (2013) 6. DOI:10.1016/j.compositesa.2012.09.00410.1016/j.compositesa.2012.09.004Suche in Google Scholar
[38] Z. Wang, X. Li: Mater. Des. 57 (2014) 598. DOI:10.1016/j.matdes.2014.01.01910.1016/j.matdes.2014.01.019Suche in Google Scholar
[39] Z. Wang, H. Tian, Z. Lu, W. Zhou: Composites, Part B 56 (2014) 1. DOI:10.1016/j.compositesb.2013.07.01310.1016/j.compositesb.2013.07.013Suche in Google Scholar
[40] E. Linul, D.A. S¸ erban, L. Marsavina, T. Sadowski: Arch. Civ. Mech. Eng. 17 (2017) 457. DOI:10.1016/j.acme.2016.12.00910.1016/j.acme.2016.12.009Suche in Google Scholar
[41] L. Zhang, S. Feih, S. Daynes, S. Chang, M.Y. Wang, J. Wei, W.F. Lu: Addit. Manuf. 23 (2018) 505. DOI:10.1016/j.addma.2018.08.00710.1016/j.addma.2018.08.007Suche in Google Scholar
© 2021 Walter de Gruyter GmbH, Berlin/Boston, Germany
Artikel in diesem Heft
- Contents
- Hot working behaviour and processing maps of duplex cast steel
- Residual stress and simulation of 304–430 stainless steel dissimilar laser-welded joints incorporating materials heterogeneity
- Microstructure and mechanical properties of AlCrFeCoNi high-entropy alloy particle reinforced Mg-9Al-1Zn matrix composites
- Microstructure and elevated temperature mechanical properties of Mg-6Gd-3Y-0.5Zr alloy cast by PEP–SET sand mold
- Properties of aluminum metal matrix composites manufactured by selective laser melting
- Energy absorption characteristics of circular-celled honeycombs under in-plane quasi-static compressive loadings
- Effect of hydrogen, and vapors of water and organic compounds on the structure of Sr2CuO3
- Self – aligned mesoporous titania nanotubes – reduced graphene oxide hybrid surface: A potential scaffold for osteogenesis
- Effect of EVA and DCP addition on injection moldability and tensile properties of recycled PE from disposable drip tapes
- Notifications
- Deutsche Gesellschaft für Materialkunde / German Materials Science Society
Artikel in diesem Heft
- Contents
- Hot working behaviour and processing maps of duplex cast steel
- Residual stress and simulation of 304–430 stainless steel dissimilar laser-welded joints incorporating materials heterogeneity
- Microstructure and mechanical properties of AlCrFeCoNi high-entropy alloy particle reinforced Mg-9Al-1Zn matrix composites
- Microstructure and elevated temperature mechanical properties of Mg-6Gd-3Y-0.5Zr alloy cast by PEP–SET sand mold
- Properties of aluminum metal matrix composites manufactured by selective laser melting
- Energy absorption characteristics of circular-celled honeycombs under in-plane quasi-static compressive loadings
- Effect of hydrogen, and vapors of water and organic compounds on the structure of Sr2CuO3
- Self – aligned mesoporous titania nanotubes – reduced graphene oxide hybrid surface: A potential scaffold for osteogenesis
- Effect of EVA and DCP addition on injection moldability and tensile properties of recycled PE from disposable drip tapes
- Notifications
- Deutsche Gesellschaft für Materialkunde / German Materials Science Society