Home Residual stress and simulation of 304–430 stainless steel dissimilar laser-welded joints incorporating materials heterogeneity
Article
Licensed
Unlicensed Requires Authentication

Residual stress and simulation of 304–430 stainless steel dissimilar laser-welded joints incorporating materials heterogeneity

  • Xilong Zhao EMAIL logo , Feng He and Kun Wang
Published/Copyright: July 28, 2021
Become an author with De Gruyter Brill

Abstract

An Nd:YAG laser device is used to conduct laser welding for a 1 mm austenitic stainless steel plate and a ferritic stainless steel plate. A finite element model of the shear punching test is constructed to generate the maximum shear strength in the weld, and the finite element model of laser welding is created using the welding temperature field. The hole drilling test result and the residual stress generated by two algorithms (Nonuniform-material and uniform-material) are compared. Results show that a drop-off of residual stress in the central area of the welded joint is observed when materials heterogeneity is disregarded. When materials heterogeneity is considered, the residual stress curve indicates smooth transition. The value of the latter appears reasonably similar to the experimental value. Therefore, this solution is advantageous in terms of residual stress simulation in dissimilar welded joints and does not critically affect residual deformation.


Dr. Xilong Zhao School of Materials Science and Engineering Lanzhou Jiaotong University 730070 Lanzhou P. R. China Tel.: +86 15769341048

Funding statement: This project was strongly supported by Gansu Provincial Natural Science Foundation (20JR5RA416), National Fund of Natural Science (50875200, 51605384 and 51765030) and Foundation of the Young Teachers in Lanzhou Jiaotong University (2016011 and 2017049). This project also was strongly supported by Professor Zhang Jianxun, Niu Jing, Liu Hong, Zhang Linjie and Xue Lele Xi’an Jiaotong University, Welding Research Institute.

  1. Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the present study.

References

[1] J. Xia, H. Jin: Int. J. Pressure Vessels Piping 165 (2018) 104. DOI:10.1016/j.ijpvp.2018.06.00310.1016/j.ijpvp.2018.06.003Search in Google Scholar

[2] M. Shojaati, B. Beidokhti: Constr. Build. Mater. 147 (2017) 608. DOI:10.1016/j.conbuildmat.2017.04.18510.1016/j.conbuildmat.2017.04.185Search in Google Scholar

[3] Q.Q. Guan, J.Q. Long, P. Yu, S.C. Jiang, W.H. Huang, J.X. Zhou: Opt. Laser Technol. 111 (2018) 387. DOI:10.1016/j.optlastec.2018.09.06010.1016/j.optlastec.2018.09.060Search in Google Scholar

[4] Z. Sun, R. Karppi: J. Mater. Process. Technol. 59 (1996) 257. DOI:10.1016/0924-0136(95)02150-710.1016/0924-0136(95)02150-7Search in Google Scholar

[5] A. Shamsolhodaei, J.P. Oliveira, N. Schell, E. Maawad, B. Panton, Y.N. Zhou: Intermetallics 116 (2020). DOI:10.1016/j.intermet.2019.10665610.1016/j.intermet.2019.106656Search in Google Scholar

[6] C.H. Lee, K.H. Chang: Appl. Therm. Eng. (2012) 45. DOI:10.1016/j.applthermaleng.2012.04.00710.1016/j.applthermaleng.2012.04.007Search in Google Scholar

[7] Y. Jiang, B.S. Xu, H.D. Wang, Y.H. Lu: Comput: Mater. Sci. 49 (2010) 603. DOI:10.1016/j.commatsci.2010.05.05710.1016/j.commatsci.2010.05.057Search in Google Scholar

[8] H.M. Soltani, M. Tayebi: J. Alloys Compd. 767 (2018) 112. DOI:10.1016/j.jallcom.2018.06.30210.1016/j.jallcom.2018.06.302Search in Google Scholar

[9] Y. Balram, T. Vishu Vardhan, B. Sridhar Babu, G. Venkat Ramana, Ch. Preethi: Mater. Today: Proc. 19 (2019) 182. DOI:10.1016/j.matpr.2019.06.69510.1016/j.matpr.2019.06.695Search in Google Scholar

[10] X.L. Zhao, J.X. Zhang, X. Song, W. Guo: Mater. Sci. Technol. 29 (2013) 1405. DOI:10.1179/1743284713Y.000000031410.1179/1743284713Y.0000000314Search in Google Scholar

[11] L. Chen, G.Y. Mi, X. Zhang, C.M. Wang: Mater. Des. 168 (2019) 1. DOI:10.1016/j.matdes.2019.10765310.1016/j.matdes.2019.107653Search in Google Scholar

[12] X.L. Zhao, J.X. Zhang, H.Y. Cheng: CMES: Comp. Model. Eng. 92 (2009) 557. DOI:10.1111/j.1365-2966.2009.15385.x10.1111/j.1365-2966.2009.15385.xSearch in Google Scholar

[13] J.P. Oliveira, N. Schell, N. Zhou, L. Wood, O. Benafan: Mater. Des. 162 (2019) 229. DOI:10.1016/j.matdes.2018.11.05310.1016/j.matdes.2018.11.053Search in Google Scholar

[14] J.P. Oliveira, R.M. Miranda, N. Schell, F.M. Braz Fernandes: Int. J. Fatigue 83 (2016) 195. DOI:10.1016/j.ijfatigue.2015.10.01310.1016/j.ijfatigue.2015.10.013Search in Google Scholar

[15] J.P. Oliveira, F.M. Braz Fernandes, R.M. Miranda, N. Schell, J.L. Ocaña: Mater. Charact. 119 (2016) 148. DOI:10.1016/j.matchar.2016.08.00110.1016/j.matchar.2016.08.001Search in Google Scholar

[16] O. Andreas, K. Holger, L. Karl-Heinz, S. Michael: Physics. Procedia 12 (2011) 11. DOI:10.1016/j.phpro.2011.03.00310.1016/j.phpro.2011.03.003Search in Google Scholar

[17] V.D. Fachinotti, A. Cardona: J. Mater. Process. Technol. 135 (2003) 30. DOI:10.1016/s0924-0136(02)00955-x10.1016/s0924-0136(02)00955-xSearch in Google Scholar

[18] C. Liu, J.X. Zhang, J. Niu: Rare. Metal. Mat. Eng. 38 (2009) 1317. DOI:10.1016/s1875-5372(10)60066-510.1016/s1875-5372(10)60066-5Search in Google Scholar

[19] L. Piotr, A. Konrad: Comput. Struct. 89 (2011) 977. DOI:10.1016/j.compstruc.2011.01.01610.1016/j.compstruc.2011.01.016Search in Google Scholar

[20] Z. Cai, H. Zhao, A. Lu: Sci. Technol. Weld. Joining 8 (2003) 195. DOI:10.1179/13621710322501091610.1179/136217103225010916Search in Google Scholar

[21] C. Liu, B. Wu, J.X. Zhang: Metall. Mater. Trans. B 41 (2010) 1129. DOI:10.1007/s11663-010-9408-y10.1007/s11663-010-9408-ySearch in Google Scholar

[22] X.L. Zhao, K. Wang: Int. J. Mater. Res. 110 (2019) 466. DOI:10.3139/146.11175710.3139/146.111757Search in Google Scholar

[23] D. Deng, K. Shoichi, O. Kazuo, Y. Nobuyoshi, S. Koichi: Nucl. Eng. Des. 241 (2010) 46. DOI:10.1016/j.nucengdes.2010.11.01010.1016/j.nucengdes.2010.11.010Search in Google Scholar

[24] D. Deng, H. Murakawa: Comput. Mater. Sci. 37 (2005) 209. DOI:10.1016/j.commatsci.2005.06.01010.1016/j.commatsci.2005.06.010Search in Google Scholar

[25] H. Kimiya, F. Majid, B. Mirko: Mater. Des. 126 (2017) 339. DOI:10.1016/j.matdes.2017.03.08810.1016/j.matdes.2017.03.088Search in Google Scholar

[26] J.P. Oliveira, F.M. Braz Fernandes, R.M. Miranda, N. Schell, J.L. Ocaña: Mater. Des. 100 (2016) 180. DIO: 10.1016/ j.matdes.2016.03.137. DOI:10.1016/j.matdes.2016.03.13710.1016/j.matdes.2016.03.137Search in Google Scholar

[27] Z.K. Lei, J.C. Zou, D.W. Wang, Z.F. Guo, R.X. Bai, H. Jiang, C. Yan: Opt. Laser Technol. 129 (2020) 106289. DOI:10.1016/j.optlastec.2020.10628910.1016/j.optlastec.2020.106289Search in Google Scholar

[28] Y. Peng, J. Zhao, L.S. Chen, J. Dong: J. Constr. Steel. Res. 176 (2021) 106346, DIO: 10.1016/j.jcsr.2020.106346. DOI:10.1016/j.jcsr.2020.10634610.1016/j.jcsr.2020.106346Search in Google Scholar

[29] V. Tvergaard: Int. J. Fract. 18 (1982) 237. DOI:10.1007/BF0001568610.1007/BF00015686Search in Google Scholar

[30] V. Tvergaard: Int. J. Fract. 17 (1981) 389. DOI:10.1007/bf0003619110.1007/bf00036191Search in Google Scholar

[31] C. Liu, J.W. Yang, Y.F. Shi, Q. Fu, Y. Zhao: J. Mater. Process. Technol. 256 (2018) 239. DOI:10.1016/j.jmatprotec.2018.02.02410.1016/j.jmatprotec.2018.02.024Search in Google Scholar

[32] K.R. Zhang, J.X. Zhang: Rare. Metal. Mat. Eng. 38 (2009) 991. DOI:10.1007/s10965-008-9216-010.1007/s10965-008-9216-0Search in Google Scholar

[33] D. Deng, K. Shoichi: Nucl. Eng. Des. 240 (2009) 688. DOI:10.1016/j.nucengdes.2009.11.04910.1016/j.nucengdes.2009.11.049Search in Google Scholar

[34] Q. Wang, X.S. Liua, P. Wang, X. Xiong, H.Y. Fang: J. Mater. Process. Technol. 240 (2016) 77. DOI:10.1016/j.jmatprotec.2016.09.01110.1016/j.jmatprotec.2016.09.011Search in Google Scholar

[35] S.A.A. Akbari Mousavi, R. Miresmaeili: J. Mater. Process. Technol. 208 (2008) 383. DOI:10.1016/j.jmatprotec.2008.01.01510.1016/j.jmatprotec.2008.01.015Search in Google Scholar

[36] S. Murugan, S.K. Rai, P.V. Kumar, T. Jayakumar, B. Raj, M.S.C. Bose: Int. J. Pressure Vessels Piping 78 (2001) 307. DOI:10.1016/S0308-0161(01)00047-310.1016/S0308-0161(01)00047-3Search in Google Scholar

[37] G. Malaiah, A. Kumar, P.G. Ravinder Reddy, M. Reddy: Mater. Des. 36 (2011) 443. DOI:10.1016/j.matdes.2011.11.06310.1016/j.matdes.2011.11.063Search in Google Scholar

[38] Z. Cai, H. Zhao: Sci. Technol. Weld. Joining 8 (2003) 195. DOI:10.1179/13621710322501091610.1179/136217103225010916Search in Google Scholar

[39] C. Liu, J.X. Zhang, B. Wu, S.L. Gong: Mater. Des. 34 (2011) 609. DOI:10.1016/j.matdes.2011.05.01410.1016/j.matdes.2011.05.014Search in Google Scholar

[40] J.P. Oliveira, Z. Zeng, C. Andrei, F.M. Braz Fernandes, R.M. Miranda, A.J. Ramirez, T. Omori, N. Zhou: Mater. Des. 128 (2017) 166. DOI:10.1016/j.matdes.2017.05.01110.1016/j.matdes.2017.05.011Search in Google Scholar

[41] J.P. Oliveira, Jiajia Shen, J.D. Escobar, C.A.F. Salvador, N. Schell, N. Zhou, O. Benafan: Mater. Des. 202 (2021) 109533. DOI:10.1016/j.matdes.2021.10953310.1016/j.matdes.2021.109533Search in Google Scholar

[42] M. Sharifitabar, A. Halvaee, S. Khorshahian: Mater. Des. 32 (2011) 3854. DOI:10.1016/j.matdes.2011.03.00710.1016/j.matdes.2011.03.007Search in Google Scholar

[43] P. Woollin, D. Carrouge: in: Proc. Super martensitic stainless steels. conference, Brussels, Belgium, (2002) 199.Search in Google Scholar

[44] J.J. Yang, Y. Wang, F.Z. Li, W.P. Huang, G.Y. Jing, Z.M. Wang, X.Y. Zeng: J. Mater. Sci. Technol. 35 (2019) 1817. DOI:10.1016/j.jmst.2019.04.01710.1016/j.jmst.2019.04.017Search in Google Scholar

[45] Y. Zhang, J. Guo, Y. Li, Z. Luo, X. Zhang: J. Mater. Res. Technol. 9 (2019) 574. DOI:10.1016/j.jmrt.2019.10.08610.1016/j.jmrt.2019.10.086Search in Google Scholar

[46] L.J. Zhang, G.F. Zhang, J. Ning, J.X. Zhang: Mater. Des. 88 (2015) 720. DOI:10.1016/j.matdes.2015.09.07210.1016/j.matdes.2015.09.072Search in Google Scholar

[47] L.J. Zhang, J.X. Zhang, K. Hussein, H. Li, Y. Wang: J. Mater. Process. Technol. 190 (2007) 109. DOI:10.1016/j.jmatprotec.2007.03.10110.1016/j.jmatprotec.2007.03.101Search in Google Scholar

[48] X.Y. Fang, H. Liu, J.X. Zhang: J. Mater. Process. Technol. 220 (2015) 124. DOI:10.1016/j.jmatprotec.2015.01.01510.1016/j.jmatprotec.2015.01.015Search in Google Scholar

Received: 2020-06-12
Accepted: 2021-04-19
Published Online: 2021-07-28
Published in Print: 2021-07-31

© 2021 Walter de Gruyter GmbH, Berlin/Boston, Germany

Downloaded on 22.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2020-7943/html
Scroll to top button