Abstract
The most promising metal processing additive manufacturing technique in industry is selective laser melting, but only a few alloys are commercially available, limiting the potential of this technique. In particular high strength aluminum alloys, which are of great importance in the automotive industry, are missing. An aluminum 2024 alloy, reinforced by Ti-6Al-4V and B4C particles, could be used as a high strength alternative for aluminum alloys. Heat treating can be used to improve the mechanical properties of the metal matrix composite. Dynamic scanning calorimetry shows the formation of Al2Cu precipitates in the matrix instead of the expected Al2CuMg phases due to the loss of magnesium during printing, and precipitation processes are accelerated due to particle reinforcement and additive manufacturing. Strong reactions between aluminum and Ti-6Al-4V are observed in the microstructure, while B4C shows no reaction with the matrix or the titanium. The material shows high hardness, high stiffness, and low ductility through precipitation and particle reinforcement.
References
[1] C.Y. Yap, C.K. Chua, Z.L. Dong, Z.H. Liu, D.Q. Zhang, L.E. Loh, S.L. Sing: Appl. Phys. Rev. 2 (2015) 41101. DOI:10.1063/1.493592610.1063/1.4935926Search in Google Scholar
[2] N.T. Aboulkhair, M. Simonelli, L. Parry, I. Ashcroft, C. Tuck, R. Hague: Prog. Mater. Sci. 106 (2019) 100578. DOI:10.1016/j.pmatsci.2019.10057810.1016/j.pmatsci.2019.100578Search in Google Scholar
[3] N. Chantarapanich, A. Laohaprapanon, S. Wisutmethangoon, P. Jiamwatthanachai, P. Chalermkarnnon, S. Sucharitpwatskul, P. Puttawibul, K. Sitthiseripratip: Rapid Prototyp. J. 20 (2014) 551. DOI:10.1108/RPJ-08-2011-008610.1108/RPJ-08-2011-0086Search in Google Scholar
[4] M. Mazur, M. Leary, M. McMillan, J. Elambasseril, M. Brandt: Rapid Prototyp. J. 22 (2016) 504. DOI:10.1108/RPJ-06-2014-007510.1108/RPJ-06-2014-0075Search in Google Scholar
[5] D. Gu: Laser Additive Manufacturing of High-Performance Materials, Springer Berlin Heidelberg, Berlin, Heidelberg (2015). DOI:10.1007/978-3-662-46089-410.1007/978-3-662-46089-4Search in Google Scholar
[6] S. Bremen, W. Meiners, A. Diatlov: Laser Technol. J. 9 (2012) 33. DOI:10.1002/latj.20129001810.1002/latj.201290018Search in Google Scholar
[7] W.E. Frazier: J. Mater. Eng. Perform. 23 (2014) 1917. DOI:10.1007/s11665-014-0958-z10.1007/s11665-014-0958-zSearch in Google Scholar
[8] S. Lathabai, Fundamentals of Aluminium Metallurgy (2018) 47. DOI:10.1016/B978-0-08-102063-0.00002-310.1016/B978-0-08-102063-0.00002-3Search in Google Scholar
[9] P. Kittali, J. Satheesh, G. Anil Kumar, T. Madhusudhan: Int. Res. J. Eng. Technol. 03 (2016) 2412.Search in Google Scholar
[10] J.M. Torralba, C.E. Da Costa, F. Velasco: J. Mater. Process. Tech-nol. 133 (2003) 203. DOI:10.1016/S0924-0136(02)00234-010.1016/S0924-0136(02)00234-0Search in Google Scholar
[11] W.C. Harrigan: Mat. Sci. Eng. A-Struct. 244 (1998) 75. DOI:10.1016/s0921-5093(97)00828-910.1016/s0921-5093(97)00828-9Search in Google Scholar
[12] N. Chawla, K.K. Chawla: Metal matrix composites, Springer-Verlag US, New York (2006). DOI:10.1002/9783527603978.mst015010.1002/9783527603978.mst0150Search in Google Scholar
[13] P. Wang, C. Gammer, F. Brenne, T. Niendorf, J. Eckert, S. Scudi-no: Comp. Part B-Eng. 147 (2018) 162. DOI:10.1016/j.compositesb.2018.04.02610.1016/j.compositesb.2018.04.026Search in Google Scholar
[14] X.P. Li, G. Ji, Z. Chen, A. Addad, Y. Wu, H.W. Wang, J. Vleu-gels, J. van Humbeeck, J.P. Kruth: Acta Mater. 129 (2017) 183. DOI:10.1016/j.actamat.2017.02.06210.1016/j.actamat.2017.02.062Search in Google Scholar
[15] D. Gu, H. Wang, D. Dai, P. Yuan, W. Meiners, R. Poprawe: Scrip-ta Mater. 96 (2015) 25. DOI:10.1016/j.scriptamat.2014.10.01110.1016/j.scriptamat.2014.10.011Search in Google Scholar
[16] X. Li, C. Kong, T. Becker, T. Sercombe: Adv. Eng. Mater. 18 (2016) 1337. DOI:10.1002/adem.20160015010.1002/adem.201600150Search in Google Scholar
[17] C.C. Leong, L. Lu, J.Y.H. Fuh, Y.S. Wong: Mat. Sci. Eng. A-Struct. 338 (2002) 81. DOI:10.1016/S0921-5093(02)00050-310.1016/S0921-5093(02)00050-3Search in Google Scholar
[18] S. Tjong: Mater. Sci. Eng. R Rep. 29 (2000) 49. DOI:10.1016/S0927-796X(00)00024-310.1016/S0927-796X(00)00024-3Search in Google Scholar
[19] J.M. Papazian: Metall. Trans. A 19 (1988) 2945. DOI:10.1007/BF0264772110.1007/BF02647721Search in Google Scholar
[20] T.S. Parel, S.C. Wang, M.J. Starink: Mater. Des. 31 (2010) S2-S5. DOI:10.1016/j.matdes.2009.12.04810.1016/j.matdes.2009.12.048Search in Google Scholar
[21] M.J. Styles, C.R. Hutchinson, Y. Chen, A. Deschamps, T.J. Bas-tow: Acta Mater. 60 (2012) 6940. DOI:10.1016/j.actamat.2012.08.04410.1016/j.actamat.2012.08.044Search in Google Scholar
[22] C. Badini, F. Marino, E. Verné: Mater. Sci. Eng. A-Struct. 191 (1995) 185. DOI:10.1016/0921-5093(94)09637-C10.1016/0921-5093(94)09637-CSearch in Google Scholar
[23] N.D. Alexopoulos, Z. Velonaki, C.I. Stergiou, S.K. Kourkoulis: Mater. Sci. Eng. A-Struct. 700 (2017) 457. DOI:10.1016/j.msea.2017.05.09010.1016/j.msea.2017.05.090Search in Google Scholar
[24] S.C. Wang, M.J. Starink: Int. Mater. Rev. 50 (2005) 193. DOI:10.1179/174328005X1435710.1179/174328005X14357Search in Google Scholar
[25] DIN EN 573–3:2019 –10, Aluminium and aluminium alloys – Chemical composition and form of wrought products – Part 3: Chemical composition and form of products; German version EN 573–3: 2019. https://dx.doi.org/10.31030/3061181.DOI:10.31030/306118110.31030/3061181Search in Google Scholar
[26] ASM International: ASM Handbook 4 (1991) 841. DOI:10.1361/asmhba000120510.1361/asmhba0001205Search in Google Scholar
[27] J.Z. Liu, S.S. Yang, S.B. Wang, J.H. Chen, C.L. Wu: J. Alloy. Compd. 613 (2014) 139. DOI:10.1016/j.jallcom.2014.06.04510.1016/j.jallcom.2014.06.045Search in Google Scholar
[28] S.C. Wang, M.J. Starink: Acta Mater. 55 (2007) 933. DOI:10.1016/j.actamat.2006.09.01510.1016/j.actamat.2006.09.015Search in Google Scholar
[29] W.M. Haynes, D.R. Lide, T.J. Bruno: CRC Handbook of Chemistry and Physics, 95th Edition, CRC Press, Taylor & Francis Group, Boca Raton (2014). DOI:10.1201/β1711810.1201/β17118Search in Google Scholar
[30] K.-H. Leitz, P. Singer, A. Plankensteiner, B. Tabernig, H. Kestler, L.S. Sigl: Met. Powder Rep. 72 (2017) 331. DOI:10.1016/j.mprp.2016.04.00410.1016/j.mprp.2016.04.004Search in Google Scholar
[31] J.M. Papazian: Metall. Trans. A 12 (1981) 269. DOI:10.1007/BF0265520010.1007/BF02655200Search in Google Scholar
[32] J. Zhang, Y.N. Huang, C. Mao, P. Peng: Solid State Commun. 152 (2012) 2100. DOI:10.1016/j.ssc.2012.09.00310.1016/j.ssc.2012.09.003Search in Google Scholar
[33] ASM Handbook Committee: ASM Handbook 2: Properties and selection: Nonferrous alloys and special-purpose materials, ASM International, Materials Park, Ohio (1990).Search in Google Scholar
[34] P. Villars (Chief Editor), PAULING FILE in: Inorganic Solid Phases, SpringerMaterials (online database), Springer, Heidelberg (ed.) Springer Materials h(Al2Cu) (CuAl2) Crystal Structure https://materials.springer.com/isp/crystallographic/docs/sd_1823269 sd_1823269 (Springer-Verlag GmbH, Heidelberg, #2016).Search in Google Scholar
[35] P. Villars (Chief Editor), PAULING FILE, in: Inorganic Solid Phases, SpringerMaterials (online database), Springer, Heidelberg (Ed.) Springer Materials Al2CuMg (MgCuAl2) Crystal Structure https://materials.springer.com/isp/crystallographic/docs/sd_1210774 sd_1210774 (Springer-Verlag GmbH, Heidelberg, #2016).Search in Google Scholar
[36] Y.C. Chen, K. Nakata: Mater. Des. 30 (2009) 469. DOI:10.1016/j.matdes.2008.06.00810.1016/j.matdes.2008.06.008Search in Google Scholar
[37] Y. Zhang, J. Huang, Z. Ye, Z. Cheng, J. Yang, S. Chen: J. Alloy. Compd. 747 (2018) 764. DOI:10.1016/j.jallcom.2018.03.11910.1016/j.jallcom.2018.03.119Search in Google Scholar
[38] M.F. Ibrahim, A. Samuel, H. Ammar, F. Samuel, M. Soliman: AFS Trans. 121 (2013) 99.Search in Google Scholar
[39] I. Gotman, M.J. Koczak, E. Shtessel: Mater. Sci. Eng. A-Struct. 187 (1994) 189. DOI:10.1016/0921-5093(94)90347-610.1016/0921-5093(94)90347-6Search in Google Scholar
[40] L. Thijs, K. Kempen, J.-P. Kruth, J. van Humbeeck: Acta Mater. 61 (2013) 1809. DOI:10.1016/j.actamat.2012.11.05210.1016/j.actamat.2012.11.052Search in Google Scholar
[41] A.H. Maamoun, M. Elbestawi, G.K. Dosbaeva, S.C. Veldhuis: Addit. Manuf. 21 (2018) 234. DOI:10.1016/j.addma.2018.03.01410.1016/j.addma.2018.03.014Search in Google Scholar
[42] P.B. Pawar, R.M. Wabale, A.A. Utpat: Mater. Today-Proc. 5 (2018) 23937. DOI:10.1016/j.matpr.2018.10.18610.1016/j.matpr.2018.10.186Search in Google Scholar
[43] N.E. Bekheet, R.M. Galderab, M.F. Salah, A.N. Abd El-Azim: Mater. Des. 23 (2002) 153. DOI:10.1016/S0261-3069(01)00072-310.1016/S0261-3069(01)00072-3Search in Google Scholar
[44] C.C. Nwobi-Okoye, B.Q. Ochieze: Def. Technol. 14 (2018) 336. DOI:10.1016/j.dt.2018.04.00110.1016/j.dt.2018.04.001Search in Google Scholar
[45] T.G. Nieh, R.F. Karlak: Scripta Metall. 18 (1984) 25. DOI:10.1016/0036-9748(84)90083-810.1016/0036-9748(84)90083-8Search in Google Scholar
[46] M.R. Raza, F. Ahmad, N. Ikram, R. Ahmad, A. Salam: J. Appl. Sci. 11 (2011) 1857. DOI:10.3923/jas.2011.1857.186110.3923/jas.2011.1857.1861Search in Google Scholar
[47] D.K. Koli, G. Agnihotri, R. Purohit: Mater. Today-Proc. 2 (2015) 3032. DOI:10.1016/j.matpr.2015.07.29010.1016/j.matpr.2015.07.290Search in Google Scholar
© 2021 Walter de Gruyter GmbH, Berlin/Boston, Germany
Articles in the same Issue
- Contents
- Hot working behaviour and processing maps of duplex cast steel
- Residual stress and simulation of 304–430 stainless steel dissimilar laser-welded joints incorporating materials heterogeneity
- Microstructure and mechanical properties of AlCrFeCoNi high-entropy alloy particle reinforced Mg-9Al-1Zn matrix composites
- Microstructure and elevated temperature mechanical properties of Mg-6Gd-3Y-0.5Zr alloy cast by PEP–SET sand mold
- Properties of aluminum metal matrix composites manufactured by selective laser melting
- Energy absorption characteristics of circular-celled honeycombs under in-plane quasi-static compressive loadings
- Effect of hydrogen, and vapors of water and organic compounds on the structure of Sr2CuO3
- Self – aligned mesoporous titania nanotubes – reduced graphene oxide hybrid surface: A potential scaffold for osteogenesis
- Effect of EVA and DCP addition on injection moldability and tensile properties of recycled PE from disposable drip tapes
- Notifications
- Deutsche Gesellschaft für Materialkunde / German Materials Science Society
Articles in the same Issue
- Contents
- Hot working behaviour and processing maps of duplex cast steel
- Residual stress and simulation of 304–430 stainless steel dissimilar laser-welded joints incorporating materials heterogeneity
- Microstructure and mechanical properties of AlCrFeCoNi high-entropy alloy particle reinforced Mg-9Al-1Zn matrix composites
- Microstructure and elevated temperature mechanical properties of Mg-6Gd-3Y-0.5Zr alloy cast by PEP–SET sand mold
- Properties of aluminum metal matrix composites manufactured by selective laser melting
- Energy absorption characteristics of circular-celled honeycombs under in-plane quasi-static compressive loadings
- Effect of hydrogen, and vapors of water and organic compounds on the structure of Sr2CuO3
- Self – aligned mesoporous titania nanotubes – reduced graphene oxide hybrid surface: A potential scaffold for osteogenesis
- Effect of EVA and DCP addition on injection moldability and tensile properties of recycled PE from disposable drip tapes
- Notifications
- Deutsche Gesellschaft für Materialkunde / German Materials Science Society