Abstract
The energy absorption characteristics of hexagonally packaged circular-celled honeycombs and quadrilater-ally packaged circular-celled honeycombs are obtained under in-plane quasi-static compressive loadings through finite element analysis. The stress–strain curves, deformation modes, energy absorption efficiency, specific plateau stress, normalized energy absorption and energy absorption diagrams are discussed. The cell arrangement patterns influence the shapes of stress–strain curves and deformation modes. The densification strain is in linear relationship with the relative density and the specific plateau stress is proportional to relative density. The hexagonally packaged circular-celled honeycombs have the largest specific plateau stress in the x2 direction for a given relative density. The normalized energy absorption is nearly proportional to the strain before densification and increases with increasing relative density for a given strain in one compression direction. The envelope line in the energy absorption diagram is approximately a straight line tangent to the shoulder points through the origin. The hexagonally packaged circular-celled honeycombs outperform the quadrilaterally packaged circular-celled honeycombs in in-plane energy absorption.
Funding statement: This work is funded by the National Natural Science Foundation of China (51575327), the Program for Innovative Talents Promotion of Shaanxi Province (2017 KCT-02), and the Key Laboratory Research Project of Education Department of Shaanxi (16JS014). The authors declare that they have no conflict of interest.
References
[1] F. Meraghni, F. Desrumaux, M.L. Benzeggagh: Composites, Part A. 30 (1999) 767. DOI:10.1016/S1359-835X(98)00182-110.1016/S1359-835X(98)00182-1Search in Google Scholar
[2] J. Chung, A.M. Waas: Acta Mech.144 (2000) 29. DOI:10.1007/BF0118182610.1007/BF01181826Search in Google Scholar
[3] J. Chung, A.M. Waas: Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 465 (2009) 25. RSPA.2008.0225. DOI:10.1098/10.1098/Search in Google Scholar
[4] T.C. Lin, T.J. Chen, J.S. Huang: Compos. Sci. Technol. 72 (2012) 1380. DOI:10.1016/j.compscitech.2012.05.00910.1016/j.compscitech.2012.05.009Search in Google Scholar
[5] T.C. Lin, J.S. Huang: Compos. Struct. 104 (2013) 14. DOI:10.1016/j.compstruct.2013.04.01510.1016/j.compstruct.2013.04.015Search in Google Scholar
[6] T.C. Lin, T.J. Chen, J.S. Huang: Compos. Struct.106 (2013) 799. DOI:10.1016/j.compstruct.2013.07.03010.1016/j.compstruct.2013.07.030Search in Google Scholar
[7] A. Cernescu, J. Romanoff, H. Remes, N. Faur, J. Jelovica: Com-pos. Struct. 108 (2014) 866. DOI:10.1016/j.compstruct.2013.10.01710.1016/j.compstruct.2013.10.017Search in Google Scholar
[8] T.P. Gotkhindi, K.R.Y. Simha: Compos. Struct. 134 (2015) 311. DOI:10.1016/j.compstruct.2015.08.06610.1016/j.compstruct.2015.08.066Search in Google Scholar
[9] T.P. Gotkhindi, K.R.Y. Simha: Int. J. Mech. Sci. 101–102 (2015) 292. DOI:10.1016/j.ijmecsci.2015.08.00910.1016/j.ijmecsci.2015.08.009Search in Google Scholar
[10] D. Karagiozova, T.X. Yu: Int. J. Impact Eng. 112 (2018) 74. DOI:10.1016/j.ijimpeng.2017.10.00610.1016/j.ijimpeng.2017.10.006Search in Google Scholar
[11] S.D. Papka, S. Kyriakides: Int. J. Solids Struct. 35 (1998) 239. DOI:10.1016/S0020-7683(97)00062-010.1016/S0020-7683(97)00062-0Search in Google Scholar
[12] J. Chung, A.M. Waas, in: AIAA-1999–1358, AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference and Exhibit, Collection of Technical Papers, Vol. 2, MO, Louis (1999) 5. DOI:10.2514/6.1999-135810.2514/6.1999-1358Search in Google Scholar
[13] J. Chung, A.M. Waas: J. Eng. Mater. Technol. 121 (1999) 494. DOI:10.1115/1.281240710.1115/1.2812407Search in Google Scholar
[14] J. Chung, A.M. Waas, in: AIAA-2001–1187, AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference and Exhibit, WA, Seattle (2001) 16. DOI:10.2514/6.2001-118710.2514/6.2001-1187Search in Google Scholar
[15] S.D. Papka, S. Kyriakides: Int. J. Solids Struct. 36 (1999) 4367. DOI:10.1016/S0020-7683(98)00224-810.1016/S0020-7683(98)00224-8Search in Google Scholar
[16] S.D. Papka, S. Kyriakides: Int. J. Solids Struct. 36 (1999) 4397. DOI:10.1016/S0020-7683(98)00225-X10.1016/S0020-7683(98)00225-XSearch in Google Scholar
[17] J. Chung, A.M. Waas: J. Eng. Mech. 27 (2001) 180. DOI:10.1061/(ASCE)0733-9399(2001)127: 2(180)10.1061/(ASCE)0733-9399(2001)127:2(180)Search in Google Scholar
[18] J. Chung, A.M. Waas: Int. J. Impact Eng. 27 (2002) 729. DOI:10.1016/S0734-743X(02)00011-810.1016/S0734-743X(02)00011-8Search in Google Scholar
[19] J. Chung, A.M. Waas: Int. J. Impact Eng. 27 (2002) 1015. DOI:10.1016/S0734-743X(02)00012-X10.1016/S0734-743X(02)00012-XSearch in Google Scholar
[20] K. Tantikom, T. Aizawa, T. Mukai: Int. J. Solids Struct. 42 (2005) 2199. DOI:10.1016/j.ijsolstr.2004.09.02810.1016/j.ijsolstr.2004.09.028Search in Google Scholar
[21] K. Tantikom, T. Aizawa, T. Mukai: Int. J. Solids Struct. 42 (2005) 2211. DOI:10.1016/j.ijsolstr.2004.09.02710.1016/j.ijsolstr.2004.09.027Search in Google Scholar
[22] D. Karagiozova, T.X. Yu: Int. J. Mech. Sci. 47 (2005) 570. DOI:10.1016/j.ijmecsci.2004.11.01110.1016/j.ijmecsci.2004.11.011Search in Google Scholar
[23] D. Karagiozova, T.X. Yu: Int. J. Impact Eng. 35 (2008) 753. DOI:10.1016/j.ijimpeng.2007.11.00110.1016/j.ijimpeng.2007.11.001Search in Google Scholar
[24] Y. Liu, X.C. Zhang: Int. J. Impact Eng. 36 (2009) 98. DOI:10.1016/j.ijimpeng.2008.03.00110.1016/j.ijimpeng.2008.03.001Search in Google Scholar
[25] X.M. Qiu, J. Zhang, T.X. Yu: Int. J. Impact Eng. 36 (2009) 1223. DOI:10.1016/j.ijimpeng.2009.05.01110.1016/j.ijimpeng.2009.05.011Search in Google Scholar
[26] X.M. Qiu, J. Zhang, T.X. Yu: Int. J. Impact Eng. 36 (2009) 1231. DOI:10.1016/j.ijimpeng.2009.05.01010.1016/j.ijimpeng.2009.05.010Search in Google Scholar
[27] L.L. Hu, T.X. Yu, Z.Y. Gao, X.Q. Huang: Int. J. Mech. Sci. 50 (2008) 1224. DOI:10.1016/j.ijmecsci.2008.03.00410.1016/j.ijmecsci.2008.03.004Search in Google Scholar
[28] T.X. Yu, Z.Y. Gao, L.L. Hu: Int. J. Prot. Struct. 2 (2011) 381. DOI:10.1260/2041-4196.2.4.38110.1260/2041-4196.2.4.381Search in Google Scholar
[29] D. Sun, W. Zhang, Y. Zhao, G. Li, Y. Xing, G. Gong: Compos. Struct. 96 (2013) 726. DOI:10.1016/j.compstruct.2012.10.00810.1016/j.compstruct.2012.10.008Search in Google Scholar
[30] D. Sun, G. Li, Y. Sun: Sci. Prog. 103 (2019) 1. DOI:10.1177/003685041987902810.1177/0036850419879028Search in Google Scholar PubMed
[31] Q.C. Wang, Z.J. Fan: Mech. Eng. 25 (2003) 20 (in Chinese). DOI:10.6052/1000-0992-2001-49810.6052/1000-0992-2001-498Search in Google Scholar
[32] C.R. Calladine, R.W. English: Int. J. Mech. Sci. 26 (1984) 689. DOI:10.1016/0020-7403(84)90021-310.1016/0020-7403(84)90021-3Search in Google Scholar
[33] Q. Liu, J. Fu, J. Wang, J. Ma, H. Chen, Q. Li, D. Hui: Composites, Part B 130 (2017) 236. DOI:10.1016/j.compositesb.2017.07.04110.1016/j.compositesb.2017.07.041Search in Google Scholar
[34] M. Avalle, G. Belingardi, R. Montanini: Int. J. Impact Eng. 25 (2001) 455. DOI:10.1016/S0734-743X(00)00060-910.1016/S0734-743X(00)00060-9Search in Google Scholar
[35] L.J. Gibson, M.F. Ashby: Cellular Solids: Structure and Properties, Cambridge University Press, Cambridge (1997). DOI:10.1017/CBO978113987832610.1017/CBO9781139878326Search in Google Scholar
[36] S.K. Maiti, L.J. Gibson, M.F. Ashby: Acta Metall. 32 (1984) 1963. DOI:10.1016/0001-6160(84)90177-910.1016/0001-6160(84)90177-9Search in Google Scholar
[37] S. Rao, R. Das, D. Bhattacharyya: Composites, Part A 45 (2013) 6. DOI:10.1016/j.compositesa.2012.09.00410.1016/j.compositesa.2012.09.004Search in Google Scholar
[38] Z. Wang, X. Li: Mater. Des. 57 (2014) 598. DOI:10.1016/j.matdes.2014.01.01910.1016/j.matdes.2014.01.019Search in Google Scholar
[39] Z. Wang, H. Tian, Z. Lu, W. Zhou: Composites, Part B 56 (2014) 1. DOI:10.1016/j.compositesb.2013.07.01310.1016/j.compositesb.2013.07.013Search in Google Scholar
[40] E. Linul, D.A. S¸ erban, L. Marsavina, T. Sadowski: Arch. Civ. Mech. Eng. 17 (2017) 457. DOI:10.1016/j.acme.2016.12.00910.1016/j.acme.2016.12.009Search in Google Scholar
[41] L. Zhang, S. Feih, S. Daynes, S. Chang, M.Y. Wang, J. Wei, W.F. Lu: Addit. Manuf. 23 (2018) 505. DOI:10.1016/j.addma.2018.08.00710.1016/j.addma.2018.08.007Search in Google Scholar
© 2021 Walter de Gruyter GmbH, Berlin/Boston, Germany
Articles in the same Issue
- Contents
- Hot working behaviour and processing maps of duplex cast steel
- Residual stress and simulation of 304–430 stainless steel dissimilar laser-welded joints incorporating materials heterogeneity
- Microstructure and mechanical properties of AlCrFeCoNi high-entropy alloy particle reinforced Mg-9Al-1Zn matrix composites
- Microstructure and elevated temperature mechanical properties of Mg-6Gd-3Y-0.5Zr alloy cast by PEP–SET sand mold
- Properties of aluminum metal matrix composites manufactured by selective laser melting
- Energy absorption characteristics of circular-celled honeycombs under in-plane quasi-static compressive loadings
- Effect of hydrogen, and vapors of water and organic compounds on the structure of Sr2CuO3
- Self – aligned mesoporous titania nanotubes – reduced graphene oxide hybrid surface: A potential scaffold for osteogenesis
- Effect of EVA and DCP addition on injection moldability and tensile properties of recycled PE from disposable drip tapes
- Notifications
- Deutsche Gesellschaft für Materialkunde / German Materials Science Society
Articles in the same Issue
- Contents
- Hot working behaviour and processing maps of duplex cast steel
- Residual stress and simulation of 304–430 stainless steel dissimilar laser-welded joints incorporating materials heterogeneity
- Microstructure and mechanical properties of AlCrFeCoNi high-entropy alloy particle reinforced Mg-9Al-1Zn matrix composites
- Microstructure and elevated temperature mechanical properties of Mg-6Gd-3Y-0.5Zr alloy cast by PEP–SET sand mold
- Properties of aluminum metal matrix composites manufactured by selective laser melting
- Energy absorption characteristics of circular-celled honeycombs under in-plane quasi-static compressive loadings
- Effect of hydrogen, and vapors of water and organic compounds on the structure of Sr2CuO3
- Self – aligned mesoporous titania nanotubes – reduced graphene oxide hybrid surface: A potential scaffold for osteogenesis
- Effect of EVA and DCP addition on injection moldability and tensile properties of recycled PE from disposable drip tapes
- Notifications
- Deutsche Gesellschaft für Materialkunde / German Materials Science Society