Abstract
The effect of hydrogen, and vapors of water and the simplest organic compounds of various classes on the structure of strontium orthocuprate (Sr2CuO3) in the temperature range of 150–300 °C has been investigated. At temperatures up to 200 °C, hydrogen and water are embedded in the structure of Sr2CuO3 from the annealing atmosphere. Under these conditions, organic compounds are oxidized to form water followed by hydration of Sr2CuO3. It has been revealed that Sr2CuO3 is a catalyst for oxidation reactions. Water absorption > 2 wt.% provokes hydrolytic decomposition of Sr2CuO3 with the formation of strontium hydroxide and copper-richer cuprates (SrCuO2 and SrCu2O3). At a temperature of 300 °C, organic compounds partially reduce copper, which is also the cause of the decomposition of Sr2CuO3.
Funding statement: The research was carried out within the state assignment of Ministry of Science and Higher Education of the Russian Federation (theme “Pressure” No. AAAA-A18-118020190104-3 and theme “Spin” No. AAAA-A18-118020290104-2)
References
[1] T. Hirata: Phys. Status Solidi A 156 (1996) 227. DOI:10.1002/pssa.221156020210.1002/pssa.2211560202Search in Google Scholar
[2] R. Zhao, M.J. Goringe, S. Myhra, P.S. Turner: Philos. Mag. A 66 (1992) 491. DOI:10.1080/0141861920820157110.1080/01418619208201571Search in Google Scholar
[3] W. Günther, R. Schollhorn, M. Epple, H. Siegle, Ch. Thomsen, B. Kabius, U. Poppe, J. Schubert, W. Zander: Philos. Mag. A 79 (1999) 449. DOI:10.1080/0141861990821030910.1080/01418619908210309Search in Google Scholar
[4] I.B. Bobylev, E.G. Gerasimov, N.A. Zyuzeva: Cryogenics 72 (2015) 36. DOI:10.1016/j.cryogenics.2015.08.00310.1016/j.cryogenics.2015.08.003Search in Google Scholar
[5] T. Motoki, Y. Yanai, K. Nunokava, S. Gondo, S. Nakamura, J. Shimoyama: Supercond. Sci. Tech. 33 (2020) 034008. DOI:10.1088/1361-6668/ab6ec210.1088/1361-6668/ab6ec2Search in Google Scholar
[6] N.A. Zyuzeva, I.B. Bobylev, S.V. Naumov, E.P. Romanov: Phys. Met. Metallogr. 115 (2014) 547. DOI:10.1134/S0031918X1406015510.1134/S0031918X14060155Search in Google Scholar
[7] I.B. Bobylev, S.V. Naumov, N.A. Zyuzeva, S.V. Telegin: Phys. Met. Metallogr. 119 (2018) 1175. DOI:10.1134/S0031918X1812004910.1134/S0031918X18120049Search in Google Scholar
[8] I.B. Bobylev, S.V. Naumov, N.A. Zyuzeva: Phys. Solid State 58 (2016) 1744. DOI:10.1134/S106378341609011010.1134/S1063783416090110Search in Google Scholar
[9] G.H. Wang, G.G. Pang, C.L. Luo, S.Z. Yang, Y. Li, Z.M. Ji, Z.J. Sun: Phys. Lett. A 130 (1988) 405. DOI:10.1016/0375-9601(88)90237-X10.1016/0375-9601(88)90237-XSearch in Google Scholar
[10] C.Y. Yang, X.-Q. Yang, S.M. Heald, J.J. Reilly, T. Skotheim, A.R. Moodenbaugh, M. Suenaga: Phys. Rev. B 36 (1987) 8798. PMid:9942711; DOI:10.1103/PhysRevB.36.879810.1103/PhysRevB.36.8798Search in Google Scholar PubMed
[11] I.B. Bobylev, Yu.S. Ponosov, N.A. Zyuzeva: Mater. Chem. Phys. 167 (2015) 1. DOI:10.1016/j.matchemphys.2015.10.04610.1016/j.matchemphys.2015.10.046Search in Google Scholar
[12] Yu.S. Ponosov, I.B. Bobylev, N.A. Zyuzeva: JETP Lett. 99 (2014) 340. DOI:10.1134/S002136401406011310.1134/S0021364014060113Search in Google Scholar
[13] I.B. Bobylev, N.A. Zyuzeva, S.V. Naumov: Philos. Mag. 99 (2019) 1928. DOI:10.1080/14786435.2019.160521810.1080/14786435.2019.1605218Search in Google Scholar
[14] I.B. Bobylev, N.A. Zyuzeva, S.V. Naumov: Russ. J. Phys. Chem. A 93 (2019) 2465. DOI:10.1134/S003602441912004510.1134/S0036024419120045Search in Google Scholar
[15] R. Neudert, S.-L. Drechsler, J. Ma’lek, H. Rosner, M. Kielwein, Z. Hu, M. Knupfer, M.S. Golden, J. Fink, N. Nücker, M. Merz, S. Schuppler, N. Motoyama, H. Eisaki, S. Uchida, M. Domke, G. Kaindl: Phys. Rev. B 62, (2000) 10752. DOI:10.1103/PhysRevB.62.1075210.1103/PhysRevB.62.10752Search in Google Scholar
[16] Z. Hiroi, M. Takano, M. Azuma, Y. Takeda: Letters to Nature 364 (1993) 315. DOI:10.1038/364315a010.1038/364315a0Search in Google Scholar
[17] W. Kraus, G. Nolze: J. Appl. Crystallogr. 29 (1996) 301. DOI:10.1107/S002188989501492010.1107/S0021889895014920Search in Google Scholar
[18] https://materials.springer.com/Search in Google Scholar
[19] A.S. Moskvin, J. Málek, M. Knupfer, R. Neudert, J. Fink, R. Hayn, S.-L. Drechsler, N. Motoyama, H. Eisaki, S. Uchida: Phys. Rev. Lett. 91, (2003) 037001. PMid:12906439; DOI:10.1103/PhysRevLett.91.03700110.1103/PhysRevLett.91.037001Search in Google Scholar
[20] A.M. Balagurov, G.M. Mironova, L.A. Rudnickij, V.Yu. Galkin: Physica C 172 (1990) 331. DOI:10.1016/0921-4534(90)90624-N10.1016/0921-4534(90)90624-NSearch in Google Scholar
[21] C.Y. Yang, S.M. Heald, M.W. Ruckman, J.J. Reilly, M. Suenaga: Physica B: 158 (1989) 484. DOI:10.1016/0921-4526(89)90357-810.1016/0921-4526(89)90357-8Search in Google Scholar
[22] V.A. Zelenskij, M.I. Alymov, A.B. Ankudimov, I.V. Tregubova: Perspectivnye materially 6 (2009) 83 (in Russian).Search in Google Scholar
[23] J.-S. Zhou: Phys. Rev. B 101 (2020) 224104 DOI:https://doi.org/10.1103/PhysRevB.101.224104.DOI:10.1103/PhysRevB.101.22410410.1103/PhysRevB.101.224104Search in Google Scholar
[24] M. Al-Mamouri, P.P. Edwards, C. Greaves, M. Slaski: Nature 369 (1994) 382. DOI: https://doi.org/10.1038/369382a0.DOI:10.1038/369382a010.1038/369382a0Search in Google Scholar
[25] J.K. Burdett: J. Phys. Chem. 100 (1996) 13263. DOI:10.1021/jp953650b10.1021/jp953650bSearch in Google Scholar
[26] L. Fieser, M. Fieser: Advanced Organic Chemistry, Reinhold Publishing Corporation, New York (1964). DOI:10.1021/jo01027a00210.1021/jo01027a002Search in Google Scholar
[27] E.V. Boikov, M.V. Vishnetskaya, A.N. Emel’yanov, Yu.N. Rufov, N.V. Shcherbakov, I.S. Tomskii: Russ. J. Phys. Chem. A 81 (2007) 861. DOI:10.1134/S003602440706005210.1134/S0036024407060052Search in Google Scholar
[28] T.A. Ivanova, I. Jacyna-Onyszkiewicz, M.A. Augustyniak-Yablo-kova, Yu.V. Yablokov, V.A. Shustov: Phys. Solid State 47 (2005) 1540. DOI:10.1134/1.201451010.1134/1.2014510Search in Google Scholar
[29] B.-H. Chen, D. Walker, B.A. Scott, D.B. Mitzi: J. Solid State Chem. 121 (1996) 498. DOI:10.1006/jssc.1996.007010.1006/jssc.1996.0070Search in Google Scholar
© 2021 Walter de Gruyter GmbH, Berlin/Boston, Germany
Articles in the same Issue
- Contents
- Hot working behaviour and processing maps of duplex cast steel
- Residual stress and simulation of 304–430 stainless steel dissimilar laser-welded joints incorporating materials heterogeneity
- Microstructure and mechanical properties of AlCrFeCoNi high-entropy alloy particle reinforced Mg-9Al-1Zn matrix composites
- Microstructure and elevated temperature mechanical properties of Mg-6Gd-3Y-0.5Zr alloy cast by PEP–SET sand mold
- Properties of aluminum metal matrix composites manufactured by selective laser melting
- Energy absorption characteristics of circular-celled honeycombs under in-plane quasi-static compressive loadings
- Effect of hydrogen, and vapors of water and organic compounds on the structure of Sr2CuO3
- Self – aligned mesoporous titania nanotubes – reduced graphene oxide hybrid surface: A potential scaffold for osteogenesis
- Effect of EVA and DCP addition on injection moldability and tensile properties of recycled PE from disposable drip tapes
- Notifications
- Deutsche Gesellschaft für Materialkunde / German Materials Science Society
Articles in the same Issue
- Contents
- Hot working behaviour and processing maps of duplex cast steel
- Residual stress and simulation of 304–430 stainless steel dissimilar laser-welded joints incorporating materials heterogeneity
- Microstructure and mechanical properties of AlCrFeCoNi high-entropy alloy particle reinforced Mg-9Al-1Zn matrix composites
- Microstructure and elevated temperature mechanical properties of Mg-6Gd-3Y-0.5Zr alloy cast by PEP–SET sand mold
- Properties of aluminum metal matrix composites manufactured by selective laser melting
- Energy absorption characteristics of circular-celled honeycombs under in-plane quasi-static compressive loadings
- Effect of hydrogen, and vapors of water and organic compounds on the structure of Sr2CuO3
- Self – aligned mesoporous titania nanotubes – reduced graphene oxide hybrid surface: A potential scaffold for osteogenesis
- Effect of EVA and DCP addition on injection moldability and tensile properties of recycled PE from disposable drip tapes
- Notifications
- Deutsche Gesellschaft für Materialkunde / German Materials Science Society