Abstract
Grain refinement has a significant influence on the improvement of mechanical properties of magnesium alloys. In this study, a series of Al–Ti–C-xGd (x = 0, 1, 2, 3) master alloys as grain refiners were prepared by self-propagating high-temperature synthesis. The synthesis mechanism of the Al–Ti–C-xGd master alloy was analyzed. The effects of Al–Ti–C-xGd master alloys on the grain refinement and mechanical properties of AZ31 (Mg-3Al-1Zn-0.4Mn) magnesium alloys were investigated. The results show that the microstructure of the Al–Ti–C-xGd alloy contains α-Al, TiAl3, TiC and the core–shell structure TiAl3/Ti2Al20Gd. The refining effect of the prepared Al–Ti–C–Gd master alloy is obviously better than that of Al–Ti–C master alloy. The grain size of AZ31 magnesium alloy was reduced from 323 μm to 72 μm when adding 1 wt.% Al–Ti–C-2Gd master alloy. In the same condition, the ultimate tensile strength and elongation of as-cast alloy were increased from 130 MPa, 7.9% to 207 MPa, 16.6% respectively.
References
[1] Y. Ali, D. Qiu, B. Jiang, F.S. Pan, M.X. Zhang: J. Alloys Compd. 619 (2015) 639. DOI:10.1016/j.jallcom.2014.09.06110.1016/j.jallcom.2014.09.061Search in Google Scholar
[2] Y. Yan, W.P. Deng, Z.F. Gao, J. Zhu, Z.J. Wang, X.W. Li: Acta Metall. Sinica Engl. Lett. 29 (2016) 163. DOI:10.1007/s40195-016-0373-610.1007/s40195-016-0373-6Search in Google Scholar
[3] D.H. StJohn, M.A. Easton, M. Qian, J.A. Taylor: Metall. Mater. Trans. A 44 (2013) 2935. DOI:10.1007/s11661-012-1513-x10.1007/s11661-012-1513-xSearch in Google Scholar
[4] E. Karakulak: J. Magnesium. Alloys 7 (2019) 355. DOI:10.1016/j.jma.2019.05.00110.1016/j.jma.2019.05.001Search in Google Scholar
[5] M.X. Han, X.Z. Zhu, T. Gao, X.F. Liu: J. Alloys Compd. 705 (2017) 14. DOI:10.1016/j.jallcom.2017.02.11610.1016/j.jallcom.2017.02.116Search in Google Scholar
[6] K. Svynarenko, J.C. Jie, Y.B. Zhang, V. Kutsove, T.J. Li: Int. J. Mater. Res.107 (2016) 168. DOI:10.3139/146.11132810.3139/146.111328Search in Google Scholar
[7] Y Birol: J Alloys Compd. 422 (2006) 128. DOI:10.1016/j.jallcom.2005.11.05910.1016/j.jallcom.2005.11.059Search in Google Scholar
[8] S.A. Torbati-Sarraf, R. Mahmudi: Mater. Sci. Eng. A 527 (2010) 3515. DOI:10.1016/j.msea.2010.02.03510.1016/j.msea.2010.02.035Search in Google Scholar
[9] X.T. Liu, H. Hao: J Alloys Compd. 623 (2015) 266. DOI:10.1016/j.jallcom.2014.10.13110.1016/j.jallcom.2014.10.131Search in Google Scholar
[10] G. Han, X.F. Liu, H.M. Ding: T. Nonferr. Metal. Soc. 19 (2009) 1057. DOI:10.1016/S1003-6326(08)60406-910.1016/S1003-6326(08)60406-9Search in Google Scholar
[11] W.W Ding, C. Xu, X.G. Hou, X.Y. Zhao, T.L. Chen, W.J. Zhao, T.D. Xia, J.S. Qiao: J. Alloys Compd. 776 (2019) 904. DOI:10.1016/j.jallcom.2018.10.24110.1016/j.jallcom.2018.10.241Search in Google Scholar
[12] H.L. Zhao, R.G. Guan, M. Li, J.S. Y, Y. G: J. Cent. South Univ. 21 (2014) 1. DOI:10.1007/s11771-014-1907-610.1007/s11771-014-1907-6Search in Google Scholar
[13] W.W. Ding, Z.Y. Zhao, W.J. Zhao, T.D. Xia: Int. J. Mater. Res. 106 (2015) 1240. DOI:10.3139/146.11130010.3139/146.111300Search in Google Scholar
[14] C.X. Xu, B.F. Lu, Z.L. Lv, W. Liang: J. Rare Earths. 26 (2008) 604. DOI:10.1016/S1002-0721(08)60146-510.1016/S1002-0721(08)60146-5Search in Google Scholar
[15] C. Xu, W.L. Xiao, W.T. Zhao, W.H. Wang, H. Shuji, Y. Hiroshi, C.L. Ma: J. Rare Earths. 33 (2015) 553. DOI:10.1016/S1002-0721(14)60455-510.1016/S1002-0721(14)60455-5Search in Google Scholar
[16] T.F. Ma, Z.Y. Chen, Z.R. Nie, H. Huang: J. Rare Earths. 31 (2013) 622. DOI:10.1016/S1002-0721(12)60331-710.1016/S1002-0721(12)60331-7Search in Google Scholar
[17] W.W. Ding, C. Xu, H.X. Zhang, W.J. Zhao, T.B. Guo, T.D. Xia: Metals-Basel. 7 (2017) 227. DOI:10.3390/met706022710.3390/met7060227Search in Google Scholar
[18] A. Prasada, K. Das, B. Murty, M. Chakraborty: Wear 261 (2006) 133. DOI:10.1016/j.wear.2005.09.01210.1016/j.wear.2005.09.012Search in Google Scholar
[19] H.L. Zhao, Y. Song, M. Li, S.K. Guan: J. Alloys Compd. 508 (2010) 206. DOI:10.1016/j.jallcom.2010.08.04710.1016/j.jallcom.2010.08.047Search in Google Scholar
[20] C.X. Xu, L.P. Liang, B.F. Lu, J.S. Zhang, W. Liang: J. Rare Earths. 24 (2006) 596. DOI:10.1016/S1002-0721(06)60171-310.1016/S1002-0721(06)60171-3Search in Google Scholar
[21] X.D. Wang, W.B Du, K. Liu, Z.H. Wang, S.B. Li: J. Alloys Compd. 522 (2012) 78. DOI:10.1016/j.jallcom.2012.01.08410.1016/j.jallcom.2012.01.084Search in Google Scholar
[22] B Pourbahari, H. Mirzadeh, M. Emamy: J. Maters. Eng. Perform. 27 (2018) 1327. DOI:10.1007/s11665-018-3238-510.1007/s11665-018-3238-5Search in Google Scholar
[23] B. Pourbahari, M. Emamy, H. Mirzadeh: Prog. Nat. Sci. Mater. Int. 27 (2017) 228. DOI:10.1016/j.pnsc.2017.02.00410.1016/j.pnsc.2017.02.004Search in Google Scholar
[24] Y.Z. Zhao, X.T. Liu, H.H.: Acta Metall. Sinica Engl. Lett. 30 (2017) 505. DOI:10.1007/S40195-017-0556-910.1007/S40195-017-0556-9Search in Google Scholar
[25] ASTM E112–13: Standard Test Methods for Determining Average Grain Size, ASTM International, West Conshohocken, PA, 2013.Search in Google Scholar
[26] H. William: CRC Handbook of Chemistry and Physics, 93rd Edition, Baton Rouge: CRC Press LLC, 2012.Search in Google Scholar
[27] T. Wang, T. Gao, J.F. Nie, P.T. Li, X.F. Liu: Mater. Charact. 83 (2013) 13. DOI:10.1016/j.matchar.2013.06.00210.1016/j.matchar.2013.06.002Search in Google Scholar
[28] X.T. Liu, H. Hao, X.X. Zhu, X.G. Zhang: T. Nonferr. Metal. Soc. 25 (2015) 1804. DOI:10.1016/S1003-6326(15)63786-410.1016/S1003-6326(15)63786-4Search in Google Scholar
[29] K. Wang, C.X. Cui, Q. Wang, S.J. Liu, C.S. Gu: Mater. Lett. 85 (2012) 153. DOI:10.1016/j.matlet.2012.06.07210.1016/j.matlet.2012.06.072Search in Google Scholar
[30] W.W. Ding, T.L. Chen, X.Y. Zhao, C. Xu, X.C. Tang, J.S. Qiao: Materials 11 (2018) 2508. DOI:10.3390/ma1112250810.3390/ma11122508Search in Google Scholar PubMed PubMed Central
[31] L. Bolzoni, U. Joshi, R. Alain, D. Garetto, N.H. Babu: Mater. Sci. Eng. A 723 (2018) 70. DOI:10.1016/j.msea.2018.03.00510.1016/j.msea.2018.03.005Search in Google Scholar
[32] Y. Watanabe, Y.B. Gao, J.Q. Guo, H. Sato, S. Miura, H. Miura: Jpn. J. Appl. Phys. 52 (2013) 1. DOI:10.7567/JJAP.52.01AN0410.7567/JJAP.52.01AN04Search in Google Scholar
[33] M. Qian: Acta Mater. 55 (2007) 943. DOI:10.1016/j.actamat.2006.09.01610.1016/j.actamat.2006.09.016Search in Google Scholar
[34] K.B. Nie, Y.C. Guo, K.K. Deng, X.K. Kang: J. Alloys Compd. 792 (2019) 267. DOI:10.1016/j.jallcom.2019.04.02810.1016/j.jallcom.2019.04.028Search in Google Scholar
[35] P. Xiao, Y.M. Gao, C.C. Yang, Z.W Liu, Y.F. Li, F.X. Xu: Mater. Sci. Eng. A 710 (2018) 251. DOI:10.1016/j.msea.2017.10.10710.1016/j.msea.2017.10.107Search in Google Scholar
[36] M. Sun, X.Y. Hu, L.M. Peng, P.H. Fu, Y.H. Peng: Mater. Sci. Eng. A 620 (2015) 89. DOI:10.1016/j.msea.2014.09.10610.1016/j.msea.2014.09.106Search in Google Scholar
[37] H. H, X.T. Liu, C.F. Fang, X.G. Zhang: Mater. Sci. Eng. A 698 (2017) 27. DOI:10.1016/j.msea.2017.04.11410.1016/j.msea.2017.04.114Search in Google Scholar
[38] K.L. Tian, Y.T. Zhao, L. Jiao, S.L. Zhang, Z.Y. Zhang, X.C. Wu: J. Alloys Compd. 594 (2014) 1. DOI:10.1016/j.jallcom.2014.01.11710.1016/j.jallcom.2014.01.117Search in Google Scholar
© 2021 Walter de Gruyter GmbH, Berlin/Boston, Germany
Articles in the same Issue
- Contents
- Original Contributions
- Distributions of As, Pb, Sn and Zn as minor elements between iron silicate slag and copper in equilibrium with tridymite in the Cu–Fe–O–Si system
- Short Communications
- Free vibration analysis and selection of composite for high strength and stiffness using multi-attribute decision making
- Metallurgical and wear study of MWCNT-reinforced h-AMMC fabricated through microwave hybrid sintering
- Effects of microstructure and lattice misfit on creep life of Ni-based single crystal superalloy during long-term thermal exposure
- Fracture toughness assessment at different regions in an inertial friction welded Ti-5Al-2Sn-2Zr-4Mo-4Cr alloy plate
- Microstructure and mechanical property improvement of dissimilar metal joints for TC4 Ti alloy to Nitinol NiTi alloy by laser welding
- The influence of gadolinium on Al–Ti–C master alloy and its refining effect on AZ31 magnesium alloy
- Effect of adding rare-earth cerium on the microstructure and acid rain corrosion resistance of the ADC12 alloy
- Effect of TiO2 crystal form on the denitration performance of Ce–W–Ti catalyst
- Notifications
- Deutsche Gesellschaft für Materialkunde / German Materials Science Society
Articles in the same Issue
- Contents
- Original Contributions
- Distributions of As, Pb, Sn and Zn as minor elements between iron silicate slag and copper in equilibrium with tridymite in the Cu–Fe–O–Si system
- Short Communications
- Free vibration analysis and selection of composite for high strength and stiffness using multi-attribute decision making
- Metallurgical and wear study of MWCNT-reinforced h-AMMC fabricated through microwave hybrid sintering
- Effects of microstructure and lattice misfit on creep life of Ni-based single crystal superalloy during long-term thermal exposure
- Fracture toughness assessment at different regions in an inertial friction welded Ti-5Al-2Sn-2Zr-4Mo-4Cr alloy plate
- Microstructure and mechanical property improvement of dissimilar metal joints for TC4 Ti alloy to Nitinol NiTi alloy by laser welding
- The influence of gadolinium on Al–Ti–C master alloy and its refining effect on AZ31 magnesium alloy
- Effect of adding rare-earth cerium on the microstructure and acid rain corrosion resistance of the ADC12 alloy
- Effect of TiO2 crystal form on the denitration performance of Ce–W–Ti catalyst
- Notifications
- Deutsche Gesellschaft für Materialkunde / German Materials Science Society