Abstract
According to the microstructural evolution during longterm thermal exposure at 1100 °C, the creep rupture life of Ni-based single crystal superalloys at 980 °C/270 MPa was evaluated. The microstructure was characterized by means of scanning electron microscopy, X-ray diffraction and related image processing methods. The size of γ’ precipitates and the precipitation amount of topologically close-packed increased with the increase in thermal exposure time, and coarsening of the γ’ precipitates led to the simultaneous increase of the matrix channel width. The relationship between the creep rupture life and the lattice misfit of γ/γ’, the coarsening of γ’ precipitate and the precipitation of TCP phase are systematically discussed. In addition, according to the correlation between γ’ phase evolution and creep characteristics during thermal exposure, a physical model is established to predict the remaining creep life.
References
[1] P.R. Bhowal,E.F. Wright,E.L. Raymond: Metall. Trans. A 21 (1990) 1709. DOI:10.1007/BF0267258710.1007/BF02672587Search in Google Scholar
[2] R.C. Reed: The Superalloys: Fundamentals and Applications, Cambridge University Press, Cambridge, 2006. DOI:10.1017/CBO978051154128510.1017/CBO9780511541285Search in Google Scholar
[3] R.C. Reed, D.C. Cox, C.M.F. Rae: Mater. Sci. Eng. A 448 (2007) 88. DOI:10.1016/j.msea.2006.11.10110.1016/j.msea.2006.11.101Search in Google Scholar
[4] M. Morinaga, N. Yukawa, H. Adachi: J. Phys. Soc. Jpn. 53 (1984) 653. DOI:10.1143/JPSJ.53.65310.1143/JPSJ.53.653Search in Google Scholar
[5] E.C. Aifantis: Acta Mech. 37 (1980) 265. DOI:10.1007/BF0120294910.1007/BF01202949Search in Google Scholar
[6] R.C. Reed, T. Tao, N. Warnken: Acta Mater. 57 (2009) 5898. DOI:10.1016/j.actamat.2009.08.01810.1016/j.actamat.2009.08.018Search in Google Scholar
[7] A.F. Giamei, D.L. Anton: Metall. Trans. A 16 (1985) 1997. DOI:10.1007/BF0266240010.1007/BF02662400Search in Google Scholar
[°] M. Simonetti, P. Caron: Mater. Sci. Eng. A 254 (1998) 1. DOI:10.1016/S0921-5093(98)00766-710.1016/S0921-5093(98)00766-7Search in Google Scholar
[9] M.V. Nathal: Metall. Trans. A 18 (1987). 1961. DOI:10.1007/BF0264702610.1007/BF02647026Search in Google Scholar
[10] R.S. Moshtaghin, S. Asgari: Mater. Des. 24 (2003) 325. DOI:10.1016/s0261-3069(03)00061-X10.1016/s0261-3069(03)00061-XSearch in Google Scholar
[11] A. Baldan: J. Mater. Sci. 37 (2002) 2171. DOI:10.1023/A:101538891272910.1023/A:1015388912729Search in Google Scholar
[12] X.Z. Qin, J.T. Guo, C. Yuan, C.L. Chen, H.Q. Ye: Metall. Mater. Trans. A 38 (2007) 3014. DOI:10.1007/s11661-007-9381-510.1007/s11661-007-9381-5Search in Google Scholar
[13] M. Aghaie-Khafri, S. Farahany: J. Mater. Eng. Perform. 19 (2010) 1065. DOI:10.1007/s11665-009-9584-610.1007/s11665-009-9584-6Search in Google Scholar
[14] X.W. Jiang, D. Wang, G. Xie, H. Li, L.H. Lou, J. Zhang: Metall. Mater. Trans. A 45 (2014) 6016. DOI:10.1007/s11661-014-2559-°10.1007/s11661-014-2559-°Search in Google Scholar
[15] M.V. Acharya, G.E. Fuchs: Mater. Sci. Eng. A 381 (2004) 143. DOI:10.1016/j.msea.2004.04.00110.1016/j.msea.2004.04.001Search in Google Scholar
[16] J.L. Liu, T. Jin, J.J. Yu, X.F. Sun, H.R. Guan, Z.Q. Hu: Mater. Sci. Eng. A 527 (2010) 890. DOI:10.1016/j.msea.2009.10.00110.1016/j.msea.2009.10.001Search in Google Scholar
[17] B. Fedelich, G. Künecke, A. Epishin, T. Link, P. Portell: Mater. Sci. Eng. A 510 (2009) 273. DOI:10.1016/j.msea.2008.04.08910.1016/j.msea.2008.04.089Search in Google Scholar
[18] S. Steuer, Z. Hervier, S. Thabart, C. Castaing, T.M. Pollock, J. Cormier: Mater. Sci. Eng. A 601 (2014) 145. DOI:10.1016/j.msea.2014.02.04610.1016/j.msea.2014.02.046Search in Google Scholar
[19] M.M. Kirka, K.A. Brindley, R.W. Neu, S.D. Antolovich, S.R. Shinde, P.W. Gravett: Int. J. Fatigue 81 (2015) 191. DOI:10.1016/j.ijfatigue.2015.08.00110.1016/j.ijfatigue.2015.08.001Search in Google Scholar
[20] S.H. Ai, V. Lupinc, G. Onofrio: Scr. Metal. Mater. 29 (1993) 1385. DOI:10.1016/0956-716X(93)90324-L10.1016/0956-716X(93)90324-LSearch in Google Scholar
[21] M. Ott, H. Mughrabi: Mater. Sci. Eng. A 272 (1999) 24. DOI:10.1016/S0921-5093(99)00453-010.1016/S0921-5093(99)00453-0Search in Google Scholar
[22] T.J. Zhou, H.S. Ding, X.P. Ma, W. Feng, H.B. Zhao, Y. Meng, H.X. Zhang, Y.M. Lv: Mater. Sci. Eng. A 725 (2018) 299. DOI:10.1016/j.msea.2018.04.03710.1016/j.msea.2018.04.037Search in Google Scholar
[23] H. Yu, W. Xu, S. Van Der Zwaag: Metall. Mater. Trans. A 49 (2018) 406. DOI:10.1007/s11661-017-4389-y10.1007/s11661-017-4389-ySearch in Google Scholar
[24] L. Luo, Y. Ma, S. Li, Y. Pei, L. Qin, S. Gong: Intermetallics 99 (2018). DOI:10.1016/18./j.intermet.2018.05.01110.1016/18./j.intermet.2018.05.011Search in Google Scholar
[25] A. Staroselsky, B.N. Cassenti: Int. J. Solids Struct. 48 (2011) 2060. DOI:10.1016/j.ijsolstr.2011.03.01110.1016/j.ijsolstr.2011.03.011Search in Google Scholar
[26] C. Meid, M. Eggeler, P. Watermeyer, A. Kostka, T. Hammerschmidt, R. Drautz, G. Eggeler, M. Bartsch: Acta Mater. 168 (2019) 343. DOI:10.1016/j.actamat.2019.02.02210.1016/j.actamat.2019.02.022Search in Google Scholar
[27] Z.H. Tan, X.G. Wang, L.H. Ye, G.C. Hou, R. Li, Y.H. Yang, J.L. Liu, J.D. Liu, L. Yang, B. Wang, P. Dong, J.G. Li, Y.Z. Zhou, X.F. Sun: Mater. Sci. Eng. A 761 (2019) 138. DOI:10.1016/j.msea.2019.13804210.1016/j.msea.2019.138042Search in Google Scholar
[28] K.Y. Cheng, C.Y. Jo, T. Jin, Z.Q. Hu: J. Alloys Compd. 509 (2011) 7078. DOI:10.1016/j.jallcom.2011.04.00110.1016/j.jallcom.2011.04.001Search in Google Scholar
[29] J.-B. Le Graverend, J. Cormier, S. Kruch, F. Gallerneau, J. Mendez: Metall. Mater. Trans. A 43 (2012) 3988. DOI:10.1007/s11661-012-1207-410.1007/s11661-012-1207-4Search in Google Scholar
[30] J. Cormier, M. Jouiad, F. Hamon, P. Villechaise, X. Milhet: Phil. Mag. Lett. 90 (2010) 611. DOI:10.1080/09500839.2010.48988710.1080/09500839.2010.489887Search in Google Scholar
[31] Y. Ru, C. Ai, S.S. Li, S.K. Gong, Y.L. Pei: Mater. Res. Innov. 19 (2015) 214. DOI:10.1179/1432891715Z.000000000154810.1179/1432891715Z.0000000001548Search in Google Scholar
[32] H.B. Long, H. Wei, Y.N. Liu, S.C. Mao, J.X. Zhang, S.S. Xiang, Y.H. Chen, W.M. Gui, Q. Li, Z. Zhang, X.D. Han: Acta Mater. 120 (2016) 95. 035. DOI:10.1016/j.actamat.2016.0810.1016/j.actamat.2016.08Search in Google Scholar
[33] J.X. Zhang, T. Murakumo, H. Harada, Y. Koizumi: Scr. Mater. 48 (2003) 287. DOI:10.1016/S1359-6462(02)00379-210.1016/S1359-6462(02)00379-2Search in Google Scholar
[34] H.B. Long, S.C. Mao, Y.R. Liu, Z. Zhang, X.D. Han: J. Alloys Compd. 743 (2018) 203. DOI:10.1016/j.jallcom.2018.01.22410.1016/j.jallcom.2018.01.224Search in Google Scholar
[35] J. Pistor, C. Körner: Mater. Lett. 2019, 1: 100003. DOI:10.1016/j.mlblux.2019.10000310.1016/j.mlblux.2019.100003Search in Google Scholar
[36] J.J. Huo, Q.Y. Shi, Y.R. Zheng, Q. Feng: Mater. Charact. 124 (2017) 73. DOI:10.1016/j.matchar.2016.12.00310.1016/j.matchar.2016.12.003Search in Google Scholar
[37] R.M. Kearsey, J.C. Beddoes, K.M. Jaansalu, W.T. Thompson, P. Au: Superalloys 2004, 2004 801.10.7449/2004/Superalloys_2004_801_810Search in Google Scholar
[38] S. Tin, T.M. Pollock: Mater. Sci. Eng. A 348 (2003) 111. DOI:10.1016/S0921-5093(02)00637-°10.1016/S0921-5093(02)00637-°Search in Google Scholar
[39] R.A. MacKay, M.V. Nathal, D.D. Pearson: Metall. Trans. A 21 (1990) 381. DOI:10.1007/BF0278241810.1007/BF02782418Search in Google Scholar
[40] K. Matuszewski, R. Rettig, H. Matysiak, Z. Peng, I. Povstugar, P. Choi, J. Müller, D. Raabe, E. Spiecker, K.J. Kurzydłowski, R.F. Singer: Acta Mater. 95 (2015) 274. DOI:10.1016/j.actamat.2015.05.03310.1016/j.actamat.2015.05.033Search in Google Scholar
[41] D.A. Porter, K.E. Easterling, M. Sherif: Phase Transformations in Metals and Alloys, CRC Press, 2009. DOI:10.1201/978143988357010.1201/9781439883570Search in Google Scholar
[42] J.B. Le Graverend, J. Cormier, S. Kruch, F. Gallerneau, J. Mendez: Metall. Mater. Trans. A 43 (2012) 3988. DOI:10.1007/s11661-012-1207-410.1007/s11661-012-1207-4Search in Google Scholar
[43] A. Sato, H. Harada, T. Yokokawa, T. Murakumo, Y. Koizumi, T. Kobayashi, H. Imai: Scripta Mater. 54 (2006) 1679. DOI:10.1016/j.scriptamat.2006.01.00310.1016/j.scriptamat.2006.01.003Search in Google Scholar
[44] C.M.F. Rae, R.C. Reed: Acta Mater. 49 (2001) 4113. DOI:10.1016/S1359-6454(01)00265-°10.1016/S1359-6454(01)00265-°Search in Google Scholar
[45] X.P. Tan, J.L. Liu, T. Jin, Z.Q. Hu, H.U. Hong, B.G. Choi, I.S. Kim, C.Y. Jo: Mater. Sci. Eng. A 528 (2011) 8381. DOI:10.1016/j.msea.2011.07.07510.1016/j.msea.2011.07.075Search in Google Scholar
[46] Z.X Wen, H.Q Pei, H. Yang, Y.W. Wu, Z.F. Yue: Int. J. Fatigue 111 (2018) 243. DOI:10.1016/j.ijfatigue.2018.02.02010.1016/j.ijfatigue.2018.02.020Search in Google Scholar
[47] L. Wang, S. Wang, X. Song, Y. Liu, G.H. Xu: Int. J. Fatigue 62 (2014) 210. DOI:10.1016/j.ijfatigue.2013.10.00610.1016/j.ijfatigue.2013.10.006Search in Google Scholar
[48] L.Q. Cui, J.J. Yu, J.L. Liu, T. Jin, X.F. Sun: Mater. Sci. Eng. A 710 (2018) 309. DOI:10.1016/j.msea.2017.11.00210.1016/j.msea.2017.11.002Search in Google Scholar
[49] T.M. Pollock, A.S. Argon: Acta Metall. Mater. 40 (1992) 1. DOI:10.1016/0956-7151(92)90195-K10.1016/0956-7151(92)90195-KSearch in Google Scholar
[50] J.J. Park: Int. J. Refract. Met. H. 17 (1999) 331. DOI:10.1016/S0263-4368(99)00023-210.1016/S0263-4368(99)00023-2Search in Google Scholar
[51] F.C. Monkman, N.J. Grant: An empirical relationship between rupture life and minimum creep rate in creep rupture tests[C]. Proc. ASTM. 56 (1956) 91.Search in Google Scholar
© 2021 Walter de Gruyter GmbH, Berlin/Boston, Germany
Articles in the same Issue
- Contents
- Original Contributions
- Distributions of As, Pb, Sn and Zn as minor elements between iron silicate slag and copper in equilibrium with tridymite in the Cu–Fe–O–Si system
- Short Communications
- Free vibration analysis and selection of composite for high strength and stiffness using multi-attribute decision making
- Metallurgical and wear study of MWCNT-reinforced h-AMMC fabricated through microwave hybrid sintering
- Effects of microstructure and lattice misfit on creep life of Ni-based single crystal superalloy during long-term thermal exposure
- Fracture toughness assessment at different regions in an inertial friction welded Ti-5Al-2Sn-2Zr-4Mo-4Cr alloy plate
- Microstructure and mechanical property improvement of dissimilar metal joints for TC4 Ti alloy to Nitinol NiTi alloy by laser welding
- The influence of gadolinium on Al–Ti–C master alloy and its refining effect on AZ31 magnesium alloy
- Effect of adding rare-earth cerium on the microstructure and acid rain corrosion resistance of the ADC12 alloy
- Effect of TiO2 crystal form on the denitration performance of Ce–W–Ti catalyst
- Notifications
- Deutsche Gesellschaft für Materialkunde / German Materials Science Society
Articles in the same Issue
- Contents
- Original Contributions
- Distributions of As, Pb, Sn and Zn as minor elements between iron silicate slag and copper in equilibrium with tridymite in the Cu–Fe–O–Si system
- Short Communications
- Free vibration analysis and selection of composite for high strength and stiffness using multi-attribute decision making
- Metallurgical and wear study of MWCNT-reinforced h-AMMC fabricated through microwave hybrid sintering
- Effects of microstructure and lattice misfit on creep life of Ni-based single crystal superalloy during long-term thermal exposure
- Fracture toughness assessment at different regions in an inertial friction welded Ti-5Al-2Sn-2Zr-4Mo-4Cr alloy plate
- Microstructure and mechanical property improvement of dissimilar metal joints for TC4 Ti alloy to Nitinol NiTi alloy by laser welding
- The influence of gadolinium on Al–Ti–C master alloy and its refining effect on AZ31 magnesium alloy
- Effect of adding rare-earth cerium on the microstructure and acid rain corrosion resistance of the ADC12 alloy
- Effect of TiO2 crystal form on the denitration performance of Ce–W–Ti catalyst
- Notifications
- Deutsche Gesellschaft für Materialkunde / German Materials Science Society