Abstract
The effect of adding cerium on the microstructure and acid rain corrosion resistance of the AlSi11Cu3 alloy was investigated by means of optical microscopy, scanning electron microscopy, and energy dispersive spectroscopy. The AlSi11Cu3 alloy was doped with varying stoichiometries of cerium to generate AlSi11Cu3-xCe, where x = 0, 0.5, 1.0, and 1.5 wt.%. The results show that the α-Al, eutectic Si, and β-Al5FeSi phases in the AlSi11Cu3-1.0Ce alloy are significantly refined. Electrochemical tests demonstrated an increase in the self-corrosion potential value of the AlSi11Cu3-1.0Ce alloy from –670 mV to –628 mV relative to the untreated alloy. In addition, the AlSi11Cu3-1.0Ce alloy has the lowest corrosion current density (8.4 μA × cm–2). Immersion corrosion testing on the AlSi11Cu3-1.0Ce alloy revealed a corrosion rate of 0.71 mg × cm–2 × d–1, constituting a 72% reduction in the corrosion rate compared to the untreated alloy. These results indicate that the AlSi11Cu3-1.0Ce alloy has a high resistance to acid rain corrosion, which is the result of a refinement of the cathode phases.
References
[1] W. Khalifa, Y. Tsunekawa,M. Okumiya: J. Mater. Process Technol. 210 (2010) 2178. DIO: 10.1016/j.jmatprotec.2010.08.008. DOI:10.1016/j.jmatprotec.2010.08.00810.1016/j.jmatprotec.2010.08.008Search in Google Scholar
[2] Y.S. Rao, H. Yan, Z. Hu: J. Rare Earth 31 (2013) 916. DOI:10.1016/S1002-0721(12)60288-910.1016/S1002-0721(12)60288-9Search in Google Scholar
[3] Z.Y. Wang, Z.S. Ji, M.L. Hu, H.Y. Xu: Mater. Charact. 62 (2011) 925. DIO: 10.1016/j.matchar.2011.07.003. DOI:10.1016/j.matchar.2011.01.01010.1016/j.matchar.2011.01.010Search in Google Scholar
[4] C. Puncreobutr, P.D. Lee, K.M. Kareh, T. Connolley, J.L. Fife, A.B. Phillion: Acta Mater. 68 (2014) 42. DOI:10.1016/j.actamat.2014.01.00710.1016/j.actamat.2014.01.007Search in Google Scholar
[5] J.B. Zhu, H. Yan, H.Y. Ye, F.R. Ai: J. Cent. South Univ. 24 (2017) 1934. DOI:10.1007/s11771-017-3540-710.1007/s11771-017-3540-7Search in Google Scholar
[6] Q.L. Li, T.D. Xia, Y.F. Lan, W.J. Zhao, L. Fan, P.F. Li: J. Alloys Compd. 562 (2013) 25. DOI:10.1016/j.jallcom.2013.02.01610.1016/j.jallcom.2013.02.016Search in Google Scholar
[7] R. Arrabal, B. Mingo, A. Pardo, M. Mohedano, E. Matykina, I. Rodríguez: Corros. Sci. 73 (2013) 342. DOI:10.1016/j.corsci.2013.04.02310.1016/j.corsci.2013.04.023Search in Google Scholar
[°] Y. Li, X.L. Yu, H.B. Cheng, W.L. Lin, J. Tang, S.F. Wang: Atmos. Res. 96 (2011) 173. DOI: 10.1016/j.atmosres.2009.12.011.10.1016/j.atmosres.2009.12.011Search in Google Scholar
[9] M.A. Domínguez-Crespo, A.M. Torres-Huerta, S.E. Rodil, E. Ramírez-Meneses, G.G. Suárez-Velázquezc, M.A. Hernández-Pérez: Electrochim. Acta 55 (2009) 498. DOI:10.1016/j.electacta.2009.09.00210.1016/j.electacta.2009.09.002Search in Google Scholar
[10] D. Zhao, J. Sun, L.L. Zhang, Y. Tan, J. Li: J. Rare Earth 28 (2010) 371. DOI:10.1016/S1002-0721(09)60092-210.1016/S1002-0721(09)60092-2Search in Google Scholar
[11] M. Bahrami, G.H. Borhani, S.R. Bakhshi, A. Ghasemi: J. Sol-Gel Sci. Technol. 76 (2015) 552. DOI:10.1007/s10971-015-3805-210.1007/s10971-015-3805-2Search in Google Scholar
[12] E.M. Elgallad, M.F. Ibrahim, H.W. Doty, F.H. Samuel: Philos. Mag. 98 (2018) 1337. DOI:10.1080/14786435.2018.143591710.1080/14786435.2018.1435917Search in Google Scholar
[13] M.V. Kuz’min, N.V. Mikhailov, M.A. Mittsev: Phys. Solid State+ 45 (2003) 579. DOI:10.1134/1.156225010.1134/1.1562250Search in Google Scholar
[14] B.B. Yu, H Yan, Q.J. Wu, Z. Hu, F.H. Chen: Int. J. Min. Met. Mater. 25 (2018) 840. DOI:10.1007/s12613-018-1595-610.1007/s12613-018-1595-6Search in Google Scholar
[15] M. Voncina, J. Medved, T. Boncina, F. Zupanic: T. Nonferr. Met. Soc. 24 (2014) 36. DOI:10.1016/S1003-6326(14)63025-910.1016/S1003-6326(14)63025-9Search in Google Scholar
[16] D.H. Xiao, J.N. Wang, D.Y. Ding, H.L. Yang: J. Alloys Compd. 352 (2003) 84. DOI:10.1016/S0925-8388(02)01162-310.1016/S0925-8388(02)01162-3Search in Google Scholar
[17] Q.L. Li, T.D. Xia, Y.F. Lan, W.J. Zhao, L. Fan, P.F. Li: J. Alloys. Compd. 562 (2013) 25. DOI:10.1016/j.jallcom.2013.02.01610.1016/j.jallcom.2013.02.016Search in Google Scholar
[18] Q. Yang, K. Guan, F. Bu, Y.Q. Zhang, X. Qiu, T. Zheng, X.J. Liu, J. Meng: Mater. Charact. 113 (2016) 180. DOI:10.1016/j.matchar.2016.01.02410.1016/j.matchar.2016.01.024Search in Google Scholar
[19] W.J. Liu, F.H. Cao, L.R. Chang, Z. Zhang, J.Q. Zhang: Corros. Sci. 51 (2009) 1334. DOI:10.1016/j.corsci.2008.12.00910.1016/j.corsci.2008.12.009Search in Google Scholar
[20] T. Takenaka, T. Ono, Y. Narazaki, Y. Naka, M. Kawakami: Electrochim. Acta 53 (2007) 117. DOI:10.1016/j.electacta.2007.03.02710.1016/j.electacta.2007.03.027Search in Google Scholar
[21] S.W. Li, B. Gao, S.H. Yin, G.F Tu, G.L. Zhu, S.C. Sun, X.P. Zhu: Appl. Surf. Sci. 357 (2015) 2004. DOI:10.1016/j.apsusc.2015.09.01310.1016/j.apsusc.2015.09.013Search in Google Scholar
[22] A.M. Cardinale, D. Macciò, G. Luciano, E. Canepa, P. Traverso: J. Alloys Compd. 695 (2017) 2180. DOI:10.1016/j.jallcom.2016.11.06610.1016/j.jallcom.2016.11.066Search in Google Scholar
[23] Y. Wang, R.K. Gupta, N.L. Sukiman, R. Zhang, C.H.J. Davies, N. Birbilis: Corros. Sci. 73 (2013) 181. DOI:10.1016/j.corsci.2013.03.03410.1016/j.corsci.2013.03.034Search in Google Scholar
[24] H. Gerengi, P. Slepski, E. Ozgan, M. Kurtay: Mater. Corros. 66 (2015) 233. DOI:10.1002/maco.20130728710.1002/maco.201307287Search in Google Scholar
[25] L.J. Yang, Y.M. Zhang, X.D. Zeng, Z.L. Song: Corros. Sci. 59 (2012) 229. DOI:10.1016/j.corsci.2012.02.00310.1016/j.corsci.2012.02.003Search in Google Scholar
[26] B.B. Yu, H. Yan, J.B. Zhu, J.L. Liu, H.G. Li, Q. Nie: Acta Metall. Sin-Engl. 32 (2019) 443. DOI:10.1007/s40195-018-0782-910.1007/s40195-018-0782-9Search in Google Scholar
[27] A. Takeuchi, A. Inoue: Mater. Trans. 46 (2005) 2817. DOI:10.2320/matertrans.46.279110.2320/matertrans.46.2791Search in Google Scholar
[28] M.G. Mahmoud, A.M. Samuel, H.W. Doty, F.H. Samuel: Inter. Metalcast. 2019.Search in Google Scholar
[29] Y.G. Zhao, Q.D. Qin, W. Zhou, Y.H. Liang: J. Alloys Compd. 389 (2005) L1. DOI:10.1016/j.jallcom.2004.07.04710.1016/j.jallcom.2004.07.047Search in Google Scholar
[30] M. Kramer, M. Schilling, R. Eifler, B. Hering, J. Reifenrath, S. Besdo, H. Windhagen, E. Willbold, A. Weizbauer: Mat. Sci. Eng. C-Mater. 59 (2016) 129. PMid:26652357; DOI:10.1016/j.msec.2015.10.00610.1016/j.msec.2015.10.006Search in Google Scholar PubMed
[31] A. Imandoust, C.D. Barrett, A.L. Oppedal, W.R. Whittington, Y. Paudel, H.El. Kadiri: Acta. Mater. 138 (2017) 27. DOI:10.1016/j.actamat.2017.07.03810.1016/j.actamat.2017.07.038Search in Google Scholar
[32] K.A. Gschneidner, F.W. Calderwood: Bulletin of Alloy Phase Diagrams, Springer-Verlag, New York (1988). DOI:10.1007/BF0288316110.1007/BF02883161Search in Google Scholar
[33] M.E. Glicksman: Principles of Solidification, Springer-Verlag, New York (2011). DOI:10.1007/978-1-4419-7344-310.1007/978-1-4419-7344-3Search in Google Scholar
[34] M.K. Aliev, A. Saboor: B. Mater. Sci. 30 (2007) 601. DOI:10.1007/s12034-007-0095-510.1007/s12034-007-0095-5Search in Google Scholar
[35] K. Dejun, W. Jinchun: J. Alloys Compd. 632 (2015) 286. DOI:10.1016/j.jallcom.2015.01.17510.1016/j.jallcom.2015.01.175Search in Google Scholar
[36] L. Cui, Y.X. Guo, X.M. Wang, Z.P. Du, F.Q. Cheng: Chinese J. Chem. Eng. 23 (2015) 590. DOI:10.1016/j.cjche.2014.03.00110.1016/j.cjche.2014.03.001Search in Google Scholar
[37] M.V. Sivaiah, S. Petit, J. Brendlé, P. Patrier: Appl. Clay Sci. 48 (2010) 138. DOI:10.1016/j.clay.2009.11.01610.1016/j.clay.2009.11.016Search in Google Scholar
[38] J. Sánchez-España, I. Yusta, W.D. Burgos: Chem. Geol. 441 (2017) 124. DOI:10.1016/j.chemgeo.2016.08.00410.1016/j.chemgeo.2016.08.004Search in Google Scholar
© 2021 Walter de Gruyter GmbH, Berlin/Boston, Germany
Articles in the same Issue
- Contents
- Original Contributions
- Distributions of As, Pb, Sn and Zn as minor elements between iron silicate slag and copper in equilibrium with tridymite in the Cu–Fe–O–Si system
- Short Communications
- Free vibration analysis and selection of composite for high strength and stiffness using multi-attribute decision making
- Metallurgical and wear study of MWCNT-reinforced h-AMMC fabricated through microwave hybrid sintering
- Effects of microstructure and lattice misfit on creep life of Ni-based single crystal superalloy during long-term thermal exposure
- Fracture toughness assessment at different regions in an inertial friction welded Ti-5Al-2Sn-2Zr-4Mo-4Cr alloy plate
- Microstructure and mechanical property improvement of dissimilar metal joints for TC4 Ti alloy to Nitinol NiTi alloy by laser welding
- The influence of gadolinium on Al–Ti–C master alloy and its refining effect on AZ31 magnesium alloy
- Effect of adding rare-earth cerium on the microstructure and acid rain corrosion resistance of the ADC12 alloy
- Effect of TiO2 crystal form on the denitration performance of Ce–W–Ti catalyst
- Notifications
- Deutsche Gesellschaft für Materialkunde / German Materials Science Society
Articles in the same Issue
- Contents
- Original Contributions
- Distributions of As, Pb, Sn and Zn as minor elements between iron silicate slag and copper in equilibrium with tridymite in the Cu–Fe–O–Si system
- Short Communications
- Free vibration analysis and selection of composite for high strength and stiffness using multi-attribute decision making
- Metallurgical and wear study of MWCNT-reinforced h-AMMC fabricated through microwave hybrid sintering
- Effects of microstructure and lattice misfit on creep life of Ni-based single crystal superalloy during long-term thermal exposure
- Fracture toughness assessment at different regions in an inertial friction welded Ti-5Al-2Sn-2Zr-4Mo-4Cr alloy plate
- Microstructure and mechanical property improvement of dissimilar metal joints for TC4 Ti alloy to Nitinol NiTi alloy by laser welding
- The influence of gadolinium on Al–Ti–C master alloy and its refining effect on AZ31 magnesium alloy
- Effect of adding rare-earth cerium on the microstructure and acid rain corrosion resistance of the ADC12 alloy
- Effect of TiO2 crystal form on the denitration performance of Ce–W–Ti catalyst
- Notifications
- Deutsche Gesellschaft für Materialkunde / German Materials Science Society