Startseite Nanoindentation investigation of solid-solution strengthening in III-V semiconductor alloys
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Nanoindentation investigation of solid-solution strengthening in III-V semiconductor alloys

  • Eric Le Bourhis EMAIL logo und Gilles Patriarche
Veröffentlicht/Copyright: 4. Februar 2022
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

III-V semiconductor alloys have been grown onto lattice-matched substrates. These systems correspond to InxGa1 –xAs with x ≈ 0.5 grown on InP, and to InyGa1yP with y ≈ 0.5 grown on GaAs and were used in order to produce epitaxial layers free of structural defects (threading dislocations). InGaP alloys, in contrast to InGaAs, are known to order partially to a degree η that can be controlled by the growth temperature and substrate orientation (here, η could be adjusted in the range 0 – 0.5). Nanoindentation tests were carried out to measure the mechanical response of the heteroepitaxial layers. Transmission electron microscopy was used to characterize the structure as well as the plastic zones generated into the specimen by nanoindentation. Comparison of the alloys with binary references (InAs, InP, GaAs, GaP bare substrates) showed strengthening, with the hardness and flow-stress values being much larger than those of binary softer reference materials (InP and InAs).


Prof. E. Le Bourhis Université de Poitiers, Laboratoire de Métallurgie Physique UMR 6630 CNRS, SP2MI-Téléport 2 Boulevard Marie et Pierre Curie, B.P. 3 01 79 F-86962 Chasseneuil Cedex, France Tel.: +33 5 49 49 67 58 Fax: +33 5 49 49 66 92

References

[1] H. Ehrenreich, J.P. Hirth: Appl. Phys. Lett. 46 (1985) 668.10.1063/1.95523Suche in Google Scholar

[2] J. Rabier, A. George: Rev. Phys. Appl.22 (1987) 1327.10.1051/rphysap:0198700220110132700Suche in Google Scholar

[3] G. Patriarche, E. Le Bourhis: Phil. Mag. A 80 (2000) 2899.10.1080/01418610008223901Suche in Google Scholar

[4] E. Le Bourhis, G.Patriarche: Prog. Cryst. Growth Charac. Mater. 47 (2003) 1.10.1016/j.pcrysgrow.2004.09.001Suche in Google Scholar

[5] S. Guruswamy, J.P. Hirth, K.T. Farber: J. Appl. Phys.60 (1986) 4136.10.1063/1.337495Suche in Google Scholar

[6] A. Djemel, J. Castaing, N. Burle-Durbec, B. Pichaud: Rev. Phys. Appl. 24 (1989) 779.10.1051/rphysap:01989002408077900Suche in Google Scholar

[7] D.Y. Watts, A.F.W. Willoughby: J. Mater. Sci.23 (1988) 272.10.1007/BF01174065Suche in Google Scholar

[8] G. Patriarche, E. Le Bourhis: J. Mater. Sci. Lett. 20 (2001) 43.10.1023/A:1006758630203Suche in Google Scholar

[9] A. Gomyo, K. Makita, I. Hino, T. Suzuki: Phys. Rev. Lett. 72 (1994) 673.10.1103/PhysRevLett.72.673Suche in Google Scholar PubMed

[10] S.B. Zhang, S. Froyen, A. Zunger: Appl. Phys. Lett. 67 (1995) 3141.10.1063/1.114860Suche in Google Scholar

[11] S. Sauvage, Y. Bernard, I. Sagnes, G. Patriarche, F. Glas, G. Le Roux, M. Bensoussan, J.A. Levenson: J. Opt. Soc. Am. B 18 (2001) 81.10.1364/JOSAB.18.000081Suche in Google Scholar

[12] W.C. Oliver, G.M. Pharr: J. Mater. Res. 7 (1992) 1564.10.1557/JMR.1992.1564Suche in Google Scholar

[13] D.R. Lide (Ed.): Handbook of Chemistry and Physics, CRC Press, Boca Raton, FL, 1994.Suche in Google Scholar

[14] E. Le Bourhis, G. Patriarche: Phil. Mag. Lett. 79 (1999) 805.10.1080/095008399176625Suche in Google Scholar

[15] K.L. Johnson: Contact Mechanics, Cambridge University Press, Cambridge (1985).10.1017/CBO9781139171731Suche in Google Scholar

[16] D. Kramer, H. Huang, M. Kriese, J. Robach, J. Nelson, A. Wright, D. Bahr, W.W. Gerberich: Acta Mater. 47 (1999) 333.10.1016/S1359-6454(98)00301-2Suche in Google Scholar

[17] E. Le Bourhis, G. Patriarche: Phys. Stat. Sol. (a) 179 (2000) 153.10.1002/1521-396X(200005)179:1<153::AID-PSSA153>3.0.CO;2-ZSuche in Google Scholar

[18] Y.Y. Lim, M.M. Chaudhri, Y. Enomoto: J. Mater. Res. 14 (1999) 2314.10.1557/JMR.1999.0308Suche in Google Scholar

[19] T.Y. Tsui, C.A. Ross, G.M. Pharr: J. Mater. Res. 18 (2003) 1383.10.1557/JMR.2003.0190Suche in Google Scholar

[20] G. Patriarche, E. Le Bourhis: J. Mater. Sci. Lett. 22 (2003) 565.10.1023/A:1022911125088Suche in Google Scholar

[21] J.F. Barbot, G. Rivaud, J.C. Desoyer: J. Mater. Sci. 23 (1988) 1655.10.1007/BF01115704Suche in Google Scholar

[22] M. Schenk, L. Thi Hai Dunog: Semicond. Sci. Technol.13 (1998) 335.10.1088/0268-1242/13/3/001Suche in Google Scholar

[23] S.E. Grillo, M. Ducarroir, M. Nadal, E. Tournié, J.P. Faurie: J. Phys. D: Appl. Phys.35 (2002) 3015.10.1088/0022-3727/35/22/317Suche in Google Scholar

[24] M.M. Chaudhri: Acta Mater. 46 (1998) 3047.10.1016/S1359-6454(98)00010-XSuche in Google Scholar

[25] L. Largeau, G. Patriarche, E. Le Bourhis: J. Mater. Sci. Lett. 21 (2002) 401.10.1023/A:1014971619783Suche in Google Scholar

[26] C. Levade, G. Vanderschaeve: Phys. Stat. Sol. (a) 171 (1999) 83.10.1002/(SICI)1521-396X(199901)171:1<83::AID-PSSA83>3.0.CO;2-CSuche in Google Scholar

[27] G. Patriarche, E. Le Bourhis: Phil. Mag. A 82 (2002)1953.10.1080/01418610208235707Suche in Google Scholar

[28] F. Glas: Inst. Phys. Conf. Ser. 134 (1993) 269.Suche in Google Scholar

[29] G. Patriarche, F. Glas, G. Le Roux, L. Largeau, A. Mereuta, J.L. Benchimol: J. Cryst. Growth 221 (2000) 12.10.1016/S0022-0248(00)00641-2Suche in Google Scholar

Received: 2004-09-09
Accepted: 2005-03-04
Published Online: 2022-02-04

© 2005 Carl Hanser Verlag, München

Artikel in diesem Heft

  1. Frontmatter
  2. Editorial
  3. nanomech 5
  4. Articles Basic
  5. Quantitative evaluation of nanoindents: Do we need more reliable mechanical parameters for the characterization of materials?
  6. Nanoindentation investigation of solid-solution strengthening in III-V semiconductor alloys
  7. Comparison between conventional Vickers hardness and indentation hardness obtained with different instruments
  8. On the pressure dependence of the indentation modulus
  9. A review on the reverse analysis for the extraction of mechanical properties using instrumented Vickers indentation
  10. Articles Applied
  11. Quasi-static and dynamic depth-sensing indentation measurements to characterize wear and mar resistance of coating–polymer systems
  12. Obtaining mechanical parameters for metallisation stress sensor design using nanoindentation
  13. Direct measurement of nanoindentation area function by metrological AFM
  14. A usable concept for the indentation of thin porous films
  15. Analysis of the ductile/brittle transition during a scratch test performed into polymeric film deposited on a PMMA substrate
  16. Nanomechanical and nanotribological properties of polymeric ultrathin films for nanoimprint lithography
  17. Adhesive and nanomechanical properties of polymeric films deposited on silicon
  18. Modelling of the nanoindentation process of ultrathin films
  19. Regular articles
  20. Experimental investigation and thermodynamic calculation in the Al–Be–Si ternary system
  21. Thermodynamic assessment of the Ca–Sn system
  22. Interfacial reaction between Cu and Ti2SnC during processing of Cu–Ti2SnC composite
  23. Effects of heat treatment on the lubricated sliding wear behaviour of zinc-based alloy containing nickel under varying test conditions
  24. Influence of Ce, K, and Na on spheroidization of eutectic carbides in low-tungsten white cast iron
  25. Notifications/Mitteilungen
  26. Personal/Personelles
  27. Press/Presse
Heruntergeladen am 16.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2005-0215/pdf
Button zum nach oben scrollen