Physical and materials aspects of photonic crystals for microwaves and millimetre waves
-
Rados Gajic
, Friedemar Kuchar, Ronald Meisels
, Jelena Radovanovic , Kurt Hingerl , Javad Zarbakhsh , Jürgen Stampfl und Alexander Woesz
Abstract
Experimental and numerical results on photonic crystals are presented for the frequency range 26–60 GHz. The material used is alumina where two techniques have been applied for fabricating the photonic crystals: manual assembly of alumina rods and rapid prototyping. The observed positions of the fundamental and higher photonic band gaps are in excellent agreement with the calculated results. A new type of defect in the 3D woodpile structure, is created by inserting interstitial rods. As a new 2D structure a square parquet lattice is investigated. The concept of a negative index of refraction is adressed including a model calculation and an experimental demonstration by the transmission through a slab of a 2D photonic crystal.
This work has been supported by FWF, Austria, project No. 15513, and the Serbian Ministry of science, project No. 1469.
References
[1] E. Yablonovitch: Scientific American 12 (2001) 34.Suche in Google Scholar
[2] J.D. Joannopoulos, R.D. Maede, J.N. Winn: Photonic Crystals, Molding the Flow of Light, Princeton University Press (1995).Suche in Google Scholar
[3] E. Yablonovitch: Phys. Rev. Letters 58 (1987) 2059.10.1103/PhysRevLett.58.2059Suche in Google Scholar PubMed
[4] S. John: Phys. Rev. B 58 (1987) 2486.10.1103/PhysRevLett.58.2486Suche in Google Scholar
[5] V.G. Veselago: Uspekhi. Fiz. Nauk 92 (1967) 517 (Soviet Physics Uspekhi 10 (1968) 509).10.3367/UFNr.0092.196707d.0517Suche in Google Scholar
[6] J.B. Pendry: Phys. Rev. Lett. 85 (2000) 3966.10.1103/PhysRevLett.85.3966Suche in Google Scholar PubMed
[7] J.B. Pendry: Physics World 14 (2001) 47.10.1088/2058-7058/14/9/32Suche in Google Scholar
[8] R.A. Shelby, D.R. Smith, S. Schultz: Science 292 (2001) 77.10.1126/science.1058847Suche in Google Scholar PubMed
[9] E. Cubukcu, K. Aydin, E. Ozbay: Phys. Rev. Lett. 91 (2003) 207401-1.10.1103/PhysRevLett.91.207401Suche in Google Scholar PubMed
[10] E. Cubukcu, K. Aydin, E. Özbay, S. Foteinopoulou, C.M. Soukoulis: Nature 423 (2003) 605.10.1038/423605aSuche in Google Scholar PubMed
[11] P.V. Parimi, W.T. Lu, P. Vodo, S. Sridhar: Nature 426 (2003) 404.10.1038/426404aSuche in Google Scholar PubMed
[12] P.V. Parimi, W.T. Lu, P. Vodo, J. Sokoloff, S. Sridhar: Cond-Mat/0308349, 18 (2003).Suche in Google Scholar
[13] http://home.earthlink.net/~jpdowling/pbgbib.htmlSuche in Google Scholar
[14] M. Maldovan, C.K. Ullal, C.W. Carter, E.L. Thomas: Nature Materials 2 (2003) 664.10.1038/nmat979Suche in Google Scholar PubMed
[15] M. Maldovan, E.L. Thomas, C.W. Carter: Applied Physics Letters 84 (2004) 362.10.1063/1.1642279Suche in Google Scholar
[16] E. Yablonovitch: Nature Materials 2 (2003) 648.10.1038/nmat987Suche in Google Scholar PubMed
[17] K.M. Ho, C.T. Chan, C.M. Soukoulis: Phys. Rev. Lett. 65 (1990) 3152.10.1103/PhysRevLett.65.3152Suche in Google Scholar PubMed
[18] K. Sakoda: Optical Properties of Photonic Crystals, Springer Series in Optical Sciences (2001).10.1007/978-3-662-14324-7Suche in Google Scholar
[19] J.B. Pendry, A. McKinnon: Phys. Rev. Lett. 69 (1992) 2772.10.1103/PhysRevLett.69.2772Suche in Google Scholar PubMed
[20] J.B. Pendry, J. Physics: Cond. Matter 8 (1996) 1085.10.1088/0953-8984/8/9/003Suche in Google Scholar
[21] A.L. Reynolds: Translight Software, University of Glasgow (2000).Suche in Google Scholar
[22] K.S. Kunz, R.J. Luebbers: The Finite Difference Time Domain Method for Electromagnetics, CRC Press (1993).Suche in Google Scholar
[23] A. Taflove, S.C. Hagnes: Computational Electrodynamics-FDTD Method, Artech House (2000).Suche in Google Scholar
[24] D.F. Sievenpiper, M.E. Sickmiller, E. Yablonovitch: Phys. Rev. Lett. 76 (1996) 2480.10.1103/PhysRevLett.76.2480Suche in Google Scholar PubMed
[25] B. Temelkuran, H. Altung, E. Ozbay: IEE Proc. Optoelectronics 145 (1998) 409.10.1049/ip-opt:19982471Suche in Google Scholar
[26] B. Temelkuran, M. Bayindir, E. Ozbay, J.P. Kavanaugh, M.M. Sigalas, G. Tuttle: Appl. Phys. Lett. 78 (2001) 264.10.1063/1.1339256Suche in Google Scholar
[27] C.C. Chang, Y. Qian, T. Itoh: Progr. in Electrom. Research, PIER 41 (2003) 211.10.2528/PIER02010890Suche in Google Scholar
[28] J.G. Fleming, S.Y. Lin, I. El-Kaidy, R. Biswas, K.M. Ho: Nature 417 (2002) 52.10.1038/417052aSuche in Google Scholar PubMed
[29] E. Yablonovitch, T.J. Gmitter, K.M. Leung: Phys. Rev. Lett. 67 (1991) 2295.10.1103/PhysRevLett.67.2295Suche in Google Scholar
[30] E. Ozbay: J. Opt. Soc. Am. B 13 (1996) 1945.10.1364/JOSAB.13.001945Suche in Google Scholar
[31] E. Ozbay, A. Abeyeta, G. Tuttle, M. Tringades, R. Biswas, C.T. Chan, C.M. Soukoulis, K.M. Ho: Phys. Rev. B 50 (1994) 1945.10.1103/PhysRevB.50.1945Suche in Google Scholar
[32] S. Foteinopoulou, E.N. Economou, C.M. Soukoulis: Phys. Rev. Lett. 90 (2003) 107402-1.10.1103/PhysRevLett.90.107402Suche in Google Scholar
[33] S. Noda, T. Baba (Eds.): Roadmap on Photonic Crystals, Kluwer Academic Publishers (2003).10.1007/978-1-4757-3716-5Suche in Google Scholar
[34] J. Stampfl, R.C. Vives, S. Seidler, R. Liska, F. Schwager, H. Gruber, A. Woesz, P. Fratzl: VR@P 2003, Int. Conference on Advanced Research in Virtual and Rapid Prototyping, Leiria, Oct. (2003).Suche in Google Scholar
[35] S. Kirihara, Y. Miyamoto, K. Takenaga, M.W. Takeda, K. Kajiyama: Sol. State Commun. 121 (2002) 435.10.1016/S0038-1098(01)00479-3Suche in Google Scholar
[36] H.S. Sözüer, J.P. Dowling: J. Mod. Optics 41 (1994) 231.10.1080/09500349414550291Suche in Google Scholar
[37] K.M. Ho, C.T. Chan, C.M. Soukoulis, R. Biswas, M. Sigolas: Sol. St. Commun. 89 (1994) 413.10.1016/0038-1098(94)90202-XSuche in Google Scholar
[38] M. Notami: Phys. Rev. B 62 (2000) 10696.10.1103/PhysRevB.62.10696Suche in Google Scholar
[39] C. Luo, S.G. Johnson, J.D. Joannopoulos, J.B. Pendry: Phys. Rev. B 65 (2002) 201104-1.10.1103/PhysRevB.65.201104Suche in Google Scholar
© 2004 Carl Hanser Verlag, München
Artikel in diesem Heft
- Frontmatter
- Editorial
- 50 Jahre Metallkunde-Kolloquium am Arlberg
- Articles Basic
- Microstructure and mechanical properties of Si and YN doped powder metallurgical tantalum
- Mechanical model for the deformation of the wood cell wall
- Physical metallurgy of high Nb-containing TiAl alloys
- Phase and microstructure selection in peritectic alloys under high G-V ratio
- Austenitic stainless steels of high strength and ductility
- Articles Applied
- Charakterisierung von Dual-Phasen- und TRIP-Stählen mittels Nanohärte und Röntgendiffraktometrie
- Mechanische Zuverlässigkeit von keramischen Kaltleiterbauelementen – Möglichkeiten zur Verbesserung
- Physical and materials aspects of photonic crystals for microwaves and millimetre waves
- In-situ investigation of strain relaxation in an Al/Si–MMC using high energy synchrotron radiation
- Sigma-phase in duplex-stainless steels
- Evolution of texture in Alloy 80A during initial ingot breakdown
- Characterisation of precipitates in a stainless maraging steel by three-dimensional atom probe and small-angle neutron scattering
- Modifikation von Titanlegierungen für medizinische Anwendungen
- Residual stresses in forged IN718 turbine discs
- Notifications/Mitteilungen
- Personal/Personelles
Artikel in diesem Heft
- Frontmatter
- Editorial
- 50 Jahre Metallkunde-Kolloquium am Arlberg
- Articles Basic
- Microstructure and mechanical properties of Si and YN doped powder metallurgical tantalum
- Mechanical model for the deformation of the wood cell wall
- Physical metallurgy of high Nb-containing TiAl alloys
- Phase and microstructure selection in peritectic alloys under high G-V ratio
- Austenitic stainless steels of high strength and ductility
- Articles Applied
- Charakterisierung von Dual-Phasen- und TRIP-Stählen mittels Nanohärte und Röntgendiffraktometrie
- Mechanische Zuverlässigkeit von keramischen Kaltleiterbauelementen – Möglichkeiten zur Verbesserung
- Physical and materials aspects of photonic crystals for microwaves and millimetre waves
- In-situ investigation of strain relaxation in an Al/Si–MMC using high energy synchrotron radiation
- Sigma-phase in duplex-stainless steels
- Evolution of texture in Alloy 80A during initial ingot breakdown
- Characterisation of precipitates in a stainless maraging steel by three-dimensional atom probe and small-angle neutron scattering
- Modifikation von Titanlegierungen für medizinische Anwendungen
- Residual stresses in forged IN718 turbine discs
- Notifications/Mitteilungen
- Personal/Personelles