Home Microstructure and mechanical properties of Si and YN doped powder metallurgical tantalum
Article
Licensed
Unlicensed Requires Authentication

Microstructure and mechanical properties of Si and YN doped powder metallurgical tantalum

  • M. Bischof EMAIL logo , H. Leitner , H. Clemens , P. Staron , G. Dehm , A. Voiticek and W. Knabl
Published/Copyright: February 8, 2022
Become an author with De Gruyter Brill

Abstract

Tantalum has a wide range of applications due to its high melting temperature, its corrosion resistance and its mechanical and electrical properties. One of these applications are fine wires which are needed for Ta-capacitors. During fabrication of such components, the wires are exposed to high temperatures and, thus, grain growth combined with embrittlement becomes a major problem. In the present work, the effects of doping with small amounts of Si and YN on microstructure and mechanical properties of annealed Ta-wires have been investigated. Doped samples show a higher hardness and strength than samples of pure powder metallurgical (PM) Ta; however, the grain growth kinetics are very similar. Samples doped with Si and samples doped with both Si and YN exhibit almost identical properties.


Michael Bischof Department für Metallkunde und Werkstoffprüfung Montanuniversität Leoben Franz Josef-Straße 18, A-8700 Leoben, Austria Tel.: +43 3842 402 4204 Fax: +43 3842 402 4202

Dedicated to Professor Dr. Dr. h. c. Franz Jeglitsch on the occasion of his 70th birthday


  1. One of us (MB) acknowledges financial support by the EU via the Marie Curie Training Site Fellowship (HPMT-CT 2000-00051). The authors thank Prof. M. Rühle for his permission to use the TEM facilities at the Max-Plack-Institut für Metallforschung in Stuttgart and Dr. F. Phillipp for his support with the HR-TEM. Additionally, we thank Prof H.-P. Stüwe for helpful discussions. Financial support of the Styrian Material Cluster is gratefully acknowledged.

References

[1] H. Alber, H. Clemens, A. Voiticek, U. Gennari, W. Köck, in: H. Bildstein, R. Eck (Eds.), Proc. of the 13th Plansee Seminar, Metallwerk Plansee, Reutte (1993), Vol. 1Search in Google Scholar

[2] P. Kumar, C.E. Mosheim: Refractory Metals and Hard Materials 12 (1993) 35.10.1016/0263-4368(93)90073-OSearch in Google Scholar

[3] A. Awasthi, Y.J. Bhatt, N. Krishnamurth, Y. Ueda, S.P. Garg: J. Alloys Comp 315 (2001) 187.10.1016/S0925-8388(00)01274-3Search in Google Scholar

[4] Yu.A. Kocherzhinskii, O.G. Kulik, E.A. Shishkin: Dokl. Chem. 261 (1981) 106.Search in Google Scholar

[5] A. Taylor, W.M. Hickam, N.J. Doyle, J. Less. Common Met. 9 (1965) 214.10.1016/0022-5088(65)90098-6Search in Google Scholar

[6] G. Kostorz, in: G. Kostorz, H. Herman (Eds.), Treatise on Materials Science and Technology, Vol.15: Neutron scattering (1979) 227–28910.1016/B978-0-12-341815-9.50013-6Search in Google Scholar

[7] G. Dehm, F. Ernst, J. Mayer, G. Möbius, H. Müllejans, F. Phillipp, Ch. Scheu, M. Rühle: Z. Metallkd. 87 (1996) 898.10.1515/ijmr-1996-871112Search in Google Scholar

[8] G. Porod: Kolloidzeitschrift 124 (1951) 83.10.1007/BF01512792Search in Google Scholar

[9] M. Maxelon, A. Pundt, W. Pyckhout-Hintzen, J. Barker, R. Kirchheim: Acta mater. 49 (2001) 2625.10.1016/S1359-6454(01)00185-9Search in Google Scholar

[10] C. Zener: Quoted in Smith CS. Trans AIME 175 (1948) 4710.3406/bifao.1948.2059Search in Google Scholar

[11] P.R. Rios, G.S. Fonseca: Scripta Materialia 50 (2004) 71.10.1016/j.scriptamat.2003.09.031Search in Google Scholar

[12] M.F. Hupalo, H.R.Z. Sandim: Materials Science and Engineering A 318 (2001) 216.10.1016/S0921-5093(01)01323-5Search in Google Scholar

[13] G. Hörz, E. Fromm, in: E. Fromm, E. Gebhardt (Eds.), Gase und Kohlenstoff in Metallen, Springer-Verlag Berlin (1976) 441.10.1007/978-3-642-80943-9_13Search in Google Scholar

Received: 2004-03-22
Accepted: 2004-04-08
Published Online: 2022-02-08

© 2004 Carl Hanser Verlag, München

Downloaded on 11.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2004-0111/html
Scroll to top button