Home Magnetic domain structure and spin reorientation process
Article
Licensed
Unlicensed Requires Authentication

Magnetic domain structure and spin reorientation process

  • Yurij G. Pastushenkov EMAIL logo
Published/Copyright: February 12, 2022
Become an author with De Gruyter Brill

Abstract

The domain structure was investigated in the spin reorientation region on the (100) and (001) planes of Nd2Fe14B and R(Fe, Co)11Ti (R = Tb, Dy) single crystals by means of the magnetooptical Kerr effect. The magnetic phase diagram of a tetragonal magnetic crystal was theoretically calculated and the effect of domain structures on phase transitions is investigated. On the basis of the observed domain configurations and domain wall density calculations, possible models for the volume magnetization distributions in tetragonal magnetic crystals with “easy cone” and “easy plane” anisotropy have been discussed.

Abstract

Die magnetischen Domänenstrukturen in der (100)- und (001)-Ebene von Nd2Fe14B- und R(Fe,Co)11Ti (R = Tb, Dy)-Einkristallen wurden mit Hilfe des magnetooptischen Kerr-Effektes im Temperaturbereich des Spin-Reorientierüngsübergangs untersucht. Das magnetische Phasen-diagramm des tetragonalen magnetischen Kristalls wurde berechnet. Außerdem wurde die Wirkung der Domänenstrukturen auf die magnetischen Phasenübergänge analysiert. Anhand der beobachteten Domänenkonfigurationen und der Berechnungen wurden Modelle für die Magnetisierungsverteilung in tetragonalen magnetischen Proben entwickelt und diskutiert.


Prof. Yurij G. Pastushenkov Department of Physic, Tver State University Zeliabova Str. 33, 170000 Tver, Russia Tel.: +7 0822 487 690 Fax: +7 0822 331 274

Dedicated to Professor Dr. Helmut Kronmüller on the occasion of his 70th birthday


  1. This work was supported by the Max-Planck-Institut für Metallforschung, Stuttgart, Germany and RFBR grant no. 01-02-17977.

References

1 Kou, X.; Zhao, T.; Grössinger, R.; Kirchmayr, H.: Phys. Rev. B 47 (1993) 3231.10.1103/PhysRevB.47.3231Search in Google Scholar

2 Pastushenkov, Yu.; Forkl, A.; Kronmüller, H.: J. Magn. Magn. Mater. 174 (1997) 278.10.1016/S0304-8853(97)00198-4Search in Google Scholar

3 Ivanova, T.; Pastushenkov, Yu.; Skokov, K.; Telegina, I.; Tskhadadze, Y.: J. Alloys Comp. 280 (1998) 20.10.1016/S0925-8388(98)00743-9Search in Google Scholar

4 Pastushenkov, Yu.; Suponev, N.; Skokov, K.; Lyakhova, M.; Forkl, A.; Kronmüller, H., in: L. Schultz, K.-H. Müller (eds.): Proc. 10th Int. Symp. on Magnetic Anisotropy and Coercivity in Rare-Earth Transition Metal Alloys, Dresden (1998) 191.Search in Google Scholar

5 Pastushenkov, Yu.; Suponev, N., in: A.V. Vediaev, A.B. Granovskii (eds.): Proc. Moscow Int. Symp. on Magnetism, Part I, Moskow (1999) 384.Search in Google Scholar

6 Lyakhova, M.; Skokov, K.; Pastushenkov, Yu.; Suponev, N.; Ivanova, T., in: As Ref. [5], p. 356.Search in Google Scholar

7 Tereshina, I.; Nikitin, S.; Pankratov, N.; Telegina, I.; Zubenko, V.; Skokov, K.; Pastushenkov, Yu., in: As Ref. [5], p. 364.Search in Google Scholar

8 Pastushenkov, Yu.; Suponev, N.; Dragon, T.; Kronmüller, H.: J. Magn. Magn. Mater. 196–197 (1999) 856.10.1016/S0304-8853(98)00978-0Search in Google Scholar

9 Pastushenkov, Yu.: Phys. Met. Metallography. 92, Suppl. 1 (2001) S62.Search in Google Scholar

10 Ivanova, T.; Nikitin S.; Tokareva D.; Telegina I.; Pastushenkov, Yu.; Skokov, K.; Suski, W.; Skourski, Yu.: J. Magn. Magn. Mater. 238 (2002) 215.10.1016/S0304-8853(01)00915-5Search in Google Scholar

Received: 2002-04-02
Published Online: 2022-02-12

© 2002 Carl Hanser Verlag, München

Articles in the same Issue

  1. Frontmatter
  2. Editorial
  3. Editorial
  4. Articles/Aufsätze
  5. Interplay between chemical and magnetic roughness of Pt in a Pt/Co bilayer investigated with X-ray resonant magnetic reflectometry
  6. Thermal stability and magnetic anisotropy dispersion in high-density hard-disk media
  7. Thickness dependence of magnetization structures in thin Permalloy rectangles
  8. Solving the selectivity problem in magnetic random access memories using configurations that form C-states
  9. Second-order magnetoelastic effects: From the Dirac equation to the magnetic properties of ultrathin epitaxial films for magnetic thin-film applications
  10. Magnetic relaxation in nanocrystalline systems: linking Monte Carlo steps with time
  11. Effect of domain size on the magneto-elastic damping in amorphous ferromagnetic metals
  12. The character and role of grain boundaries in NdFeB-type alloys and magnets
  13. Magnetic domain structure and spin reorientation process
  14. Magnetic properties of Tb(Fe, Mo)12 and Tb(Fe, Mo)12C compounds
  15. Microstructure, magnetic properties and magnetic hardening in 2 : 17 Sm–Co magnets
  16. Micromagnetism and microstructure – tailoring of high-performance permanent magnets
  17. Metastable alloys at moderate cooling rates
  18. Thermal critical phenomena and crossover between critical regimes in ferromagnets with long-range interactions
  19. Vacancies in thermal equilibrium and ferromagnetism near the Curie temperature
  20. The vortex lattice in superconductors
  21. Functional substrates – a novel approach to tailor transport properties and flux-line pinning in YBa2Cu3O7 – x thin films
  22. Superconducting permanent magnets and their application in magnetic levitation
  23. Magneto-optical studies of flux pinning in high-temperature superconductors
  24. Atomic transport in amorphous metals
  25. A novel technique for measuring diffusivities of short-lived radioisotopes in solids
  26. Hydrogen four-level tunnel systems in substitutional body-centred cubic alloys
  27. Magnetic relaxation phenomena in cobalt
  28. The Verwey transition in magnetite as studied by means of definite impurity doping
  29. Notifications/Mitteilungen
  30. Personal/Personelles
  31. Bücher/Books
  32. Conferences/Konferenzen
  33. DGM Training/DGM Fortbildung
Downloaded on 3.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2002-0172/html
Scroll to top button