Abstract
Lung cancer is the second most common cancer and the most lethal cancer worldwide. Melatonin, an indoleamine produced in the pineal gland, shows anticancer effects on a variety of cancers, especially lung cancer. Herein, we clarify the pathophysiology of lung cancer, the association of circadian rhythm with lung, and the relationship between shift work and the incidence of lung cancer. Special focus is placed on the role of melatonin receptors in lung cancer, the relationship between inflammation and lung cancer, control of cell proliferation, apoptosis, autophagy, and immunomodulation in lung cancer by melatonin. A review of the drug synergy of melatonin with other anticancer drugs suggests its usefulness in combination therapy. In summary, the information compiled may serve as a comprehensive reference for the various mechanisms of action of melatonin against lung cancer, as a guide for the design of future experimental research and for advancing melatonin as a therapeutic agent for lung cancer.
Acknowledgments
The authors would like to thank International Medical University, Malaysia, for supporting the project.
-
Research funding: None declared
-
Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.
-
Competing interests: The authors declare no conflict of interest, financial or otherwise.
-
Informed consent: Not applicable.
-
Ethical approval: Not applicable.
References
1. Ferlay, J, Colombet, M, Soerjomataram, I, Parkin, DM, Piñeros, M, Znaor, A, et al.. Cancer statistics for the year 2020: an overview. Int J Cancer 2021;149:778–89. https://doi.org/10.1002/ijc.33588.Search in Google Scholar PubMed
2. Classification and pathology of lung cancer - surgical oncology clinics [Internet]. Available from: https://www.surgonc.theclinics.com/article/S1055-3207(16)00005-3/fulltext [Accessed 29 Oct 2021].Search in Google Scholar
3. InStatPearls. Squamous cell lung cancer. Treasure island (FL): StatPearls publishing, 2021. Available from: http://www.ncbi.nlm.nih.gov/books/NBK564510/.Search in Google Scholar
4. Islami, F, Stoklosa, M, Drope, J, Jemal, A. Global and regional patterns of tobacco smoking and tobacco control policies. Eur Urol Focus 2015;1:3–16. https://doi.org/10.1016/j.euf.2014.10.001.Search in Google Scholar PubMed
5. Bernhardt, EB, Jalal, SI. Small cell lung cancer. Lung Cancer: Res Treat 2016;170:301–22.10.1007/978-3-319-40389-2_14Search in Google Scholar PubMed
6. Lemjabbar-Alaoui, H, Hassan, OU, Yang, Y-W, Buchanan, P. Lung cancer: biology and treatment options. Biochim Biophys Acta BBA - Rev Cancer 2015;1856:189–210. https://doi.org/10.1016/j.bbcan.2015.08.002.Search in Google Scholar PubMed PubMed Central
7. Duma, N, Santana-Davila, R, Molina, JR. Non–small cell lung cancer: epidemiology, screening, diagnosis, and treatment. Clin Proc 2019;94:1623–40. https://doi.org/10.1016/j.mayocp.2019.01.013.Search in Google Scholar PubMed
8. Wu, YL, Cheng, Y, Zhou, X, Lee, KH, Nakagawa, K, Niho, S, et al.. Dacomitinib versus gefitinib as first-line treatment for patients with EGFR-mutation-positive non-small-cell lung cancer (ARCHER 1050): a randomised, open-label, phase 3 trial. Lancet Oncol 2017;18:1454–66. https://doi.org/10.1016/s1470-2045(17)30608-3.Search in Google Scholar PubMed
9. Fehrenbacher, L, Spira, A, Ballinger, M, Kowanetz, M, Vansteenkiste, J, Mazieres, J, et al.. Atezolizumab versus docetaxel for patients with previously treated non-small-cell lung cancer (POPLAR): a multicentre, open-label, phase 2 randomised controlled trial. Lancet 2016;387:1837–46. https://doi.org/10.1016/s0140-6736(16)00587-0.Search in Google Scholar
10. Talib, WH. Consumption of garlic and lemon aqueous extracts combination reduces tumor burden by angiogenesis inhibition, apoptosis induction, and immune system modulation. Nutrition 2017;43–44:89–97. https://doi.org/10.1016/j.nut.2017.06.015.Search in Google Scholar PubMed
11. Lerner, AB, Case, JD, Takahashi, Y, Lee, TH, Mori, W. Isolation of melatonin, the pineal gland factor that lightens melanocytes1. J Am Chem Soc 1958;80:2587. https://doi.org/10.1021/ja01543a060.Search in Google Scholar
12. Tordjman, S, Chokron, S, Delorme, R, Charrier, A, Bellissant, E, Jaafari, N, et al.. Melatonin: pharmacology, functions and therapeutic benefits. Curr Neuropharmacol 2017;15:434–43. https://doi.org/10.2174/1570159x14666161228122115.Search in Google Scholar PubMed PubMed Central
13. Talib, WH, Alsayed, AR, Abuawad, A, Daoud, S, Mahmod, AI. Melatonin in cancer treatment: current knowledge and future opportunities. Molecules 2021;26:2506. https://doi.org/10.3390/molecules26092506.Search in Google Scholar PubMed PubMed Central
14. Imenshahidi, M, Karimi, G, Hosseinzadeh, H. Effects of melatonin on cardiovascular risk factors and metabolic syndrome: a comprehensive review. Naunyn-Schmiedeberg’s Arch Pharmacol 2020;393:521–36. https://doi.org/10.1007/s00210-020-01822-4.Search in Google Scholar PubMed
15. Biggio, G, Biggio, F, Talani, G, Mostallino, MC, Aguglia, A, Aguglia, E, et al.. Melatonin: from neurobiology to treatment. Brain Sci 2021;11:1121. https://doi.org/10.3390/brainsci11091121.Search in Google Scholar PubMed PubMed Central
16. Kong, X, Gao, R, Wang, Z, Wang, X, Fang, Y, Gao, J, et al.. Melatonin: a potential therapeutic option for breast cancer. Trends Endocrinol Metab 2020;31:859–71. https://doi.org/10.1016/j.tem.2020.08.001.Search in Google Scholar PubMed
17. Pourhanifeh, MH, Hosseinzadeh, A, Juybari, KB, Mehrzadi, S. Melatonin and urological cancers: a new therapeutic approach. Cancer Cell Int 2020;20:444. https://doi.org/10.1186/s12935-020-01531-1.Search in Google Scholar PubMed PubMed Central
18. Pourhanifeh, MH, Kamali, M, Mehrzadi, S, Hosseinzadeh, A. Melatonin and neuroblastoma: a novel therapeutic approach. Mol Biol Rep 2021;48:4659–65. https://doi.org/10.1007/s11033-021-06439-1.Search in Google Scholar PubMed
19. Chok, KC, Ng, CH, Koh, RY, Ng, KY, Chye, SM. The potential therapeutic actions of melatonin in colorectal cancer. Horm Mol Biol Clin Invest 2019;39:20190001. https://doi.org/10.1515/hmbci-2019-0001.Search in Google Scholar PubMed
20. Shokrzadeh, M, Chabra, A, Naghshvar, F, Ahmadi, A, Jafarinejhad, M, Hasani-Nourian, Y. Protective effects of melatonin against cyclophosphamide-induced oxidative lung toxicity in mice. Drug Res 2015;65:281–6. https://doi.org/10.1055/s-0034-1371801.Search in Google Scholar PubMed
21. Dauchy, RT, Dauchy, EM, Belancio, VP, Mao, L, Hill, SM, Sauer, LA, et al.. Abstract 5167: melatonin inhibition of linoleic acid transport and 13-HODE production in HeLa human cervical adenocarcinoma occurs via receptor-mediated signal transduction. Cancer Res 2012;72:5167.10.1158/1538-7445.AM2012-5167Search in Google Scholar
22. Plaimee, P, Weerapreeyakul, N, Thumanu, K, Tanthanuch, W, Barusrux, S. Melatonin induces apoptosis through biomolecular changes, in SK-LU-1 human lung adenocarcinoma cells. Cell Prolif 2014;47:564–77. https://doi.org/10.1111/cpr.12140.Search in Google Scholar PubMed PubMed Central
23. Plaimee, P, Khamphio, M, Weerapreeyakul, N, Barusrux, S, Johns, NP. Immunomodulatory effect of melatonin in SK-LU-1 human lung adenocarcinoma cells co-cultured with peripheral blood mononuclear cells. Cell Prolif 2014;47:406–15. https://doi.org/10.1111/cpr.12119.Search in Google Scholar PubMed PubMed Central
24. Zhou, Q, Gui, S, Zhou, Q, Wang, Y. Melatonin inhibits the migration of human lung adenocarcinoma A549 cell lines involving JNK/MAPK pathway. Plos One 2014;9:e101132. https://doi.org/10.1371/journal.pone.0101132.Search in Google Scholar PubMed PubMed Central
25. Thandra, KC, Barsouk, A, Saginala, K, Aluru, JS, Barsouk, A. Epidemiology of lung cancer. Contemp Oncol 2021;25:45–52. https://doi.org/10.5114/wo.2021.103829.Search in Google Scholar PubMed PubMed Central
26. Ertel, KA, Berkman, LF, Buxton, OM. Socioeconomic status, characteristics occupational, duration sleep. in African/Caribbean immigrants and US white health care workers. Sleep 2011;34:509–18. https://doi.org/10.1093/sleep/34.4.509.Search in Google Scholar PubMed PubMed Central
27. Travis, RC, Balkwill, A, Fensom, GK, Appleby, PN, Reeves, GK, Wang, XS, et al.. Night Shift Work and Breast Cancer Incidence: three prospective studies and meta-analysis of published studies. JNCI J Natl Cancer Inst 2016;108:djw169.10.1093/jnci/djw169Search in Google Scholar PubMed PubMed Central
28. Boivin, DB, Boudreau, P. Impacts of shift work on sleep and circadian rhythms. Pathol Biol 2014;62:292–301. https://doi.org/10.1016/j.patbio.2014.08.001.Search in Google Scholar PubMed
29. Kwon, P, Lundin, J, Li, W, Ray, R, Littell, C, Gao, D, et al.. Night shift work and lung cancer risk among female textile workers in Shanghai, China. J Occup Environ Hyg 2015;4:334–41. https://doi.org/10.1080/15459624.2014.993472.Search in Google Scholar PubMed PubMed Central
30. Dun, A, Zhao, X, Jin, X, Wei, T, Gao, X, Wang, Y, et al.. Updated systematic review and meta-analysis. Front Oncol 2020;10:1006.10.3389/fonc.2020.01006Search in Google Scholar PubMed PubMed Central
31. Liu, W, Zhou, Z, Dong, D, Sun, L, Zhang, G. Sex differences in the association between night shift work and the risk of cancers: a meta-analysis of 57 articles. Dis Markers 2018;2018:e7925219. https://doi.org/10.1155/2018/7925219.Search in Google Scholar PubMed PubMed Central
32. Schernhammer, ES, Feskanich, D, Liang, G, Han, J. Rotating night-shift work and lung cancer risk among female nurses in the United States. Am J Epidemiol 2013;178:1434–41. https://doi.org/10.1093/aje/kwt155.Search in Google Scholar PubMed PubMed Central
33. Gu, F, Han, J, Laden, F, Pan, A, Caporaso, NE, Stampfer, MJ, et al.. Total and cause-specific mortality of U.S. nurses working rotating night shifts. Am J Prev Med 2015;48:241–52. https://doi.org/10.1016/j.amepre.2014.10.018.Search in Google Scholar PubMed PubMed Central
34. McNeil, J, Heer, E, Willemsen, RF, Friedenreich, CM, Brenner, DR. The effects of shift work and sleep duration on cancer incidence in Alberta`s tomorrow project cohort. Cancer Epidemiol 2020;67:101729. https://doi.org/10.1016/j.canep.2020.101729.Search in Google Scholar PubMed
35. Barbosa, AA, Pedrazzoli, M, Koike, BDV, Tufik, S. Do Caucasian and Asian clocks tick differently? Braz J Med Biol Res Rev Bras Pesqui Medicas E Biol. 2010;43:96–9. https://doi.org/10.1590/s0100-879x2010000100013.Search in Google Scholar
36. Higuchi, S, Motohashi, Y, Ishibashi, K, Maeda, T. Influence of eye colors of Caucasians and Asians on suppression of melatonin secretion by light. Am J Physiol Regul Integr Comp Physiol 2007;292:R2352–6. https://doi.org/10.1152/ajpregu.00355.2006.Search in Google Scholar PubMed
37. Espino, J, Rodríguez, AB, Pariente, JA. The inhibition of TNF-α-induced leucocyte apoptosis by melatonin involves membrane receptor MT1/MT2 interaction. J Pineal Res 2013;54:442–52. https://doi.org/10.1111/jpi.12042.Search in Google Scholar PubMed
38. Sánchez-Hidalgo, M, Guerrero Montávez, JM. Carrascosa-Salmoral, MDP, Naranjo Gutierrez, MDC, Lardone, PJ, De La Lastra, RCA. Decreased MT1 and MT2 melatonin receptor expression in extrapineal tissues of the rat during physiological aging. J Pineal Res 2009;46:29–35. https://doi.org/10.1111/j.1600-079x.2008.00604.x.Search in Google Scholar PubMed
39. Legros, C, Devavry, S, Caignard, S, Tessier, C, Delagrange, P, Ouvry, C, et al.. Melatonin MT1 and MT2 receptors display different molecular pharmacologies only in the G-protein coupled state. Br J Pharmacol 2014;171:186–201. https://doi.org/10.1111/bph.12457.Search in Google Scholar PubMed PubMed Central
40. Liu, J, Clough, SJ, Hutchinson, AJ, Adamah-Biassi, EB, Popovska-Gorevski, M, Dubocovich, ML. MT1 and MT2 melatonin receptors: a therapeutic perspective. Annu Rev Pharmacol Toxicol 2016.10.1146/annurev-pharmtox-010814-124742Search in Google Scholar PubMed PubMed Central
41. Lu, X, He, G, Yu, H, Ma, Q, Shen, S, Das, UN. Colorectal cancer cell growth inhibition by linoleic acid is related to fatty acid composition changes. J Zhejiang Univ - Sci B 2010;11:923–30. https://doi.org/10.1631/jzus.b1000125.Search in Google Scholar PubMed PubMed Central
42. Fang, Z, Jung, KH, Yan, HH, Kim, SJ, Rumman, M, Park, JH, et al.. Melatonin synergizes with sorafenib to suppress pancreatic cancer via melatonin receptor and PDGFR-β/STAT3 pathway. Cell Physiol Biochem Int J Exp Cell Physiol Biochem Pharmacol 2018;47:1751–68. https://doi.org/10.1159/000491058.Search in Google Scholar PubMed
43. Chao, CC, Chen, PC, Chiou, PC, Hsu, CJ, Liu, PI, Yang, YC, et al.. Melatonin suppresses lung cancer metastasis by inhibition of epithelial-mesenchymal transition through targeting to Twist. Clin Sci Lond Engl 2019;133:709–22. https://doi.org/10.1042/cs20180945.Search in Google Scholar
44. Jablonska, K, Nowinska, K, Piotrowska, A, Partynska, A, Katnik, E, Pawelczyk, K, et al.. Prognostic impact of melatonin receptors MT1 and MT2 in non-small cell lung cancer (NSCLC. Cancers 2019;11:1001. https://doi.org/10.3390/cancers11071001.Search in Google Scholar PubMed PubMed Central
45. Ozguner, F, Koyu, A, Cesur, G. Active smoking causes oxidative stress and decreases blood melatonin levels. Toxicol Ind Health 2005;21:21–6. https://doi.org/10.1191/0748233705th211oa.Search in Google Scholar PubMed
46. de Castro, TB, Mota, AL, Bordin-Junior, NA, Neto, DS, Zuccari, DAPC. Immunohistochemical expression of melatonin receptor MT1 and glucose transporter GLUT1 in human breast cancer. Anti Cancer Agents Med Chem 2018;18:2110–6. https://doi.org/10.2174/1871520618666181025125532.Search in Google Scholar PubMed
47. Gomes, M, Teixeira, A, Coelho, A, Araújo, A, Medeiros, R. Inflammation and lung cancer oxidative stress, ROS, and DNA damage. Boca Raton: CRC Press; 2016:215–23 pp.Search in Google Scholar
48. Chen, L, Deng, H, Cui, H, Fang, J, Zuo, Z, Deng, J, et al.. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget 2018;23:7204. https://doi.org/10.18632/oncotarget.23208.Search in Google Scholar PubMed PubMed Central
49. Gomes, M, Teixeira, AL, Coelho, A, Araújo, A, Medeiros, R. The role of inflammation in lung cancer. Inflamm Cancer 2014;816:1–23.10.1007/978-3-0348-0837-8_1Search in Google Scholar PubMed
50. Yan, B, Wang, H, Rabbani, ZN, Zhao, Y, Li, W, Yuan, Y, et al.. Tumor necrosis factor-α is a potent endogenous mutagen that promotes cellular transformation. Cancer Res 2006;66:11565–70. https://doi.org/10.1158/0008-5472.can-06-2540.Search in Google Scholar
51. Altorki, NK, Markowitz, GJ, Gao, D, Port, JL, Saxena, A, Stiles, B, et al.. The lung microenvironment: an important regulator of tumour growth and metastasis. Nat Rev Cancer 2019;19:9–31. https://doi.org/10.1038/s41568-018-0081-9.Search in Google Scholar PubMed PubMed Central
52. Conway, EM, Pikor, LA, Kung, SH, Hamilton, MJ, Lam, S, Lam, WL, et al.. Macrophages, inflammation, and lung cancer. Am J Respir Crit Care Med 2016;193:116–30. https://doi.org/10.1164/rccm.201508-1545ci.Search in Google Scholar
53. Xu, J, Yin, Z, Gao, W, Liu, L, Wang, R, Huang, P, et al.. Meta-analysis on the association between nonsteroidal anti-inflammatory drug use and lung cancer risk. Clin Lung Cancer 2012;13:44–51. https://doi.org/10.1016/j.cllc.2011.06.009.Search in Google Scholar PubMed
54. Lévêque, E, Lacourt, A, Philipps, V, Luce, D, Guénel, P, Stücker, I, et al.. A new trajectory approach for investigating the association between an environmental or occupational exposure over lifetime and the risk of chronic disease: application to smoking, asbestos, and lung cancer. Plos One 2020;15:e0236736. https://doi.org/10.1371/journal.pone.0236736.Search in Google Scholar PubMed PubMed Central
55. Hanahan, D, Weinberg, RA. Hallmarks of cancer: the next generation. Cell 2011;144:646–74. https://doi.org/10.1016/j.cell.2011.02.013.Search in Google Scholar PubMed
56. Ambarus, CA, Krausz, S, van Eijk, M, Hamann, J, Radstake, TRDJ, Reedquist, KA, et al.. Systematic validation of specific phenotypic markers for in vitro polarized human macrophages. J Immunol Methods 2012;375:196–206. https://doi.org/10.1016/j.jim.2011.10.013.Search in Google Scholar PubMed
57. Martey, CA, Pollock, SJ, Turner, CK, O’Reilly, KMA, Baglole, CJ, Phipps, RP, et al.. Cigarette smoke induces cyclooxygenase-2 and microsomal prostaglandin E2 synthase in human lung fibroblasts: implications for lung inflammation and cancer. Am J Physiol Lung Cell Mol Physiol 2004;287:L981–91. https://doi.org/10.1152/ajplung.00239.2003.Search in Google Scholar PubMed
58. Smith, C, Perfetti, T, King, J. Perspectives on pulmonary inflammation and lung cancer risk in cigarette smokers. Inhal Toxicol 2006;18:667–77. https://doi.org/10.1080/08958370600742821.Search in Google Scholar PubMed
59. Bracke, KR, D’hulst, AI, Maes, T, Moerloose, KB, Demedts, IK, Lebecque, S, et al.. Attenuated in CCR6-deficient mice. J Immunol 2006;177:4350–9. https://doi.org/10.4049/jimmunol.177.7.4350.Search in Google Scholar PubMed
60. Harpsøe, NG, Andersen, LPH, Gögenur, I, Rosenberg, J. Clinical pharmacokinetics of melatonin: a systematic review. Eur J Clin Pharmacol 2015;71:901–9. https://doi.org/10.1007/s00228-015-1873-4.Search in Google Scholar PubMed
61. Andersen, LPH, Gögenur, I, Rosenberg, J, Reiter, RJ. Pharmacokinetics of melatonin: the missing link in clinical efficacy? Clin Pharmacokinet 2016;55:1027–30. https://doi.org/10.1007/s40262-016-0386-3.Search in Google Scholar PubMed
62. Zetner, D, Andersen, L, Rosenberg, J. Pharmacokinetics of alternative administration routes of melatonin: a systematic review. Drug Res 2015;66:169–73. https://doi.org/10.1055/s-0035-1565083.Search in Google Scholar PubMed
63. Bechgaard, E. Intranasal absorption of melatonin in vivo bioavailability study. Int J Pharm 1999;182:1–5. https://doi.org/10.1016/s0378-5173(99)00019-8.Search in Google Scholar PubMed
64. Andersen, LPH, Werner, MU, Rosenkilde, MM, Harpsøe, NG, Fuglsang, H, Rosenberg, J, et al.. Pharmacokinetics of oral and intravenous melatonin in healthy volunteers. BMC Pharmacol Toxicol 2016;17:8. https://doi.org/10.1186/s40360-016-0052-2.Search in Google Scholar PubMed PubMed Central
65. Hilli, J, Korhonen, T, Turpeinen, M, Hokkanen, J, Mattila, S, Laine, K. The effect of oral contraceptives on the pharmacokinetics of melatonin in healthy subjects with CYP1A2 g.-163C>A polymorphism. J Clin Pharmacol 2008;48:986–94. https://doi.org/10.1177/0091270008318669.Search in Google Scholar PubMed
66. Di, WL, Kadva, A, Johnston, A, Silman, R. Variable bioavailability of oral melatonin. N Engl J Med 1997;336:1028–9. https://doi.org/10.1056/nejm199704033361418.Search in Google Scholar PubMed
67. Lu, JJ, Fu, L, Tang, Z, Zhang, C, Qin, L, Wang, J, et al.. Melatonin inhibits AP-2β/hTERT, NF-κB/COX-2 and Akt/ERK and activates caspase/Cyto C signaling to enhance the antitumor activity of berberine in lung cancer cells. Oncotarget 2016;7:2985–3001. https://doi.org/10.18632/oncotarget.6407.Search in Google Scholar PubMed PubMed Central
68. Hanahan, D, Weinberg, RA. The hallmarks of cancer. Cell 2000;100:57–70. https://doi.org/10.1016/s0092-8674(00)81683-9.Search in Google Scholar PubMed
69. Kong, X, Zhao, Y, Li, X, Tao, Z, Hou, M, Ma, H. Overexpression of HIF-2α-Dependent NEAT1 promotes the progression of non-small cell lung cancer through miR-101-3p/SOX9/Wnt/β-Catenin signal pathway. Cell Physiol Biochem Int J Exp Cell Physiol Biochem Pharmacol 2019;52:368–81.10.33594/000000026Search in Google Scholar PubMed
70. Hua, Q, Mi, B, Xu, F, Wen, J, Zhao, L, Liu, J, et al.. Hypoxia-induced lncRNA-AC020978 promotes proliferation and glycolytic metabolism of non-small cell lung cancer by regulating PKM2/HIF-1α axis. Theranostics 2020;10:4762–78. https://doi.org/10.7150/thno.43839.Search in Google Scholar PubMed PubMed Central
71. Zou, B, Zhou, X-L, Lai, S-Q, Liu, J-C. Notch signaling and non-small cell lung cancer (Review). Oncol Lett 2018;15:3415–21. https://doi.org/10.3892/ol.2018.7738.Search in Google Scholar PubMed PubMed Central
72. Plaimee, P, Weerapreeyakul, N, Barusrux, S, Johns, NP. Melatonin potentiates cisplatin-induced apoptosis and cell cycle arrest in human lung adenocarcinoma cells. Cell Prolif 2015;48:67–77. https://doi.org/10.1111/cpr.12158.Search in Google Scholar PubMed PubMed Central
73. Shi, L, Wang, X. Role of osteopontin in lung cancer evolution and heterogeneity. InSeminars Cell Dev Biol 2017;64:40–7. https://doi.org/10.1016/j.semcdb.2016.08.032.Search in Google Scholar PubMed
74. Xiong, Y, Wang, C, Shi, L, Wang, L, Zhou, Z, Chen, D, et al.. Myosin light chain kinase: a potential target for treatment of inflammatory diseases. Front Pharmacol 2017;8:292. https://doi.org/10.3389/fphar.2017.00292.Search in Google Scholar PubMed PubMed Central
75. Gurunathan, S, Jeyaraj, M, Kang, MH, Kim, JH. Melatonin enhances palladium-nanoparticle-induced cytotoxicity and apoptosis in human lung epithelial adenocarcinoma cells A549 and H1229. Antioxidants 2020;9:357. https://doi.org/10.3390/antiox9040357.Search in Google Scholar PubMed PubMed Central
76. Liu, H, Wang, F, Zhao, J, Zhang, X, Zeng, Z, Wang, S, et al.. The effect and mechanisms of melatonin on the proliferation and apoptosis of lung cancer cells. Bioengineered 2022;13:3462–9. https://doi.org/10.1080/21655979.2021.2023803.Search in Google Scholar PubMed PubMed Central
77. Phiboonchaiyanan, PP, Puthongking, P, Chawjarean, V, Harikarnpakdee, S, Sukprasansap, M, Chanvorachote, P, et al.. Melatonin and its derivative disrupt cancer stem-like phenotypes of lung cancer cells via AKT downregulation. Clin Exp Pharmacol Physiol 2021;48:1712–23. https://doi.org/10.1111/1440-1681.13572.Search in Google Scholar PubMed
78. Lu, YX, Chen, DL, Wang, DS, Chen, LZ, Mo, HY, Sheng, H, et al.. Melatonin enhances sensitivity to fluorouracil in oesophageal squamous cell carcinoma through inhibition of Erk and Akt pathway. Cell Death Dis 2016;7:e2432 https://doi.org/10.1038/cddis.2016.330.Search in Google Scholar PubMed PubMed Central
79. Moreno, ACR. Saito, RDF, Tiago, M, Massaro, RR, Pagni, RL, Pegoraro, R, et al.. Melatonin inhibits human melanoma cells proliferation and invasion via cell cycle arrest and cytoskeleton remodeling. Melatonin Res 2020;3:194–209. https://doi.org/10.32794/mr11250057.Search in Google Scholar
80. Song, J, Ma, SJ, Luo, JH, Zhang, H, Wang, RX, Liu, H, et al.. Melatonin induces the apoptosis and inhibits the proliferation of human gastric cancer cells via blockade of the AKT/MDM2 pathway. Oncol Rep 2018;39:1975–83. https://doi.org/10.3892/or.2018.6282.Search in Google Scholar PubMed
81. Alvarez-Artime, A, Cernuda-Cernuda, R. Francisco-artime-naveda, cepas V, gonzalez-menendez P, fernadez-vega S, Quiros-gonzalez I, sainz RM, mayo JC. Melatonin-induced cytoskeleton Reorganization leads to inhibition of melanoma cancer cell proliferation. Int J Mol Sci 2020;21:548. https://doi.org/10.3390/ijms21020548.Search in Google Scholar PubMed PubMed Central
82. Sainz, RM, Mayo, JC, Rodriguez, C, Tan, DX, Lopez-Burillo, S, Reiter, RJ. Melatonin and cell death: differential actions on apoptosis in normal and cancer cells. Cell Mol Life Sci CMLS 2003;60:1407–26. https://doi.org/10.1007/s00018-003-2319-1.Search in Google Scholar PubMed
83. Hanahan, D, Weinberg, RA. Hallmarks of cancer: the next generation. Cell 2011;4:646–74. https://doi.org/10.1016/j.cell.2011.02.013.Search in Google Scholar PubMed
84. Block, KI, Gyllenhaal, C, Lowe, L, Amedei, A, Amin, AR, Aquilano, K, et al.. Designing a broad-spectrum integrative approach for cancer prevention and treatment.Semin. Cancer 2015;35:276–304.Search in Google Scholar
85. Talib, W. Melatonin and cancer hallmarks. Molecules. 2018;23:518. https://doi.org/10.3390/molecules23030518.Search in Google Scholar PubMed PubMed Central
86. YUN, M, KIM, EO, LEE D. Melatonin sensitizes H1975 non-small-cell lung cancer cells harboring a T790M-targeted epidermal growth factor receptor mutation to the tyrosine kinase inhibitor gefitinib. Cell Physiol Biochem 2014;34:865–72. https://doi.org/10.1159/000366305.Search in Google Scholar PubMed
87. Beker, MC, Caglayan, B, Caglayan, AB, Kelestemur, T, Yalcin, E, Caglayan, A, et al.. Interaction of melatonin and Bmal1 in the regulation of PI3K/AKT pathway components and cellular survival. Sci Rep 2019;9:19082. https://doi.org/10.1038/s41598-019-55663-0.Search in Google Scholar PubMed PubMed Central
88. Fan, L, Sun, G, Ma, T, Zhong, F, Wei, W. Melatonin overcomes apoptosis resistance in human hepatocellular carcinoma by targeting survivin and XIAP. J Pineal Res 2013;55:174–83. https://doi.org/10.1111/jpi.12060.Search in Google Scholar PubMed
89. Fan, LL, Sun, GP, Wei, W, Wang, ZG, Ge, L, Fu, WZ, et al.. Melatonin and doxorubicin synergistically induce cell apoptosis in human hepatoma cell lines. World J Gastroenterol WJG 2010;28:1473. https://doi.org/10.3748/wjg.v16.i12.1473.Search in Google Scholar PubMed PubMed Central
90. Bin-Jaliah, I, Sakr, H. Melatonin ameliorates brain oxidative stress and upregulates senescence marker protein-30 and osteopontin in a rat model of vascular dementia. Phys Int 2018;105:38–52. https://doi.org/10.1556/2060.105.2018.1.1.Search in Google Scholar PubMed
91. Li, W, Fan, M, Chen, Y, Zhao, Q, Song, C, Yan, Y, et al.. Melatonin induces cell apoptosis in AGS cells through the activation of JNK and P38 MAPK and the suppression of nuclear factor-kappa B: a novel therapeutic implication for gastric cancer. Cell Physiol Biochem Int J Exp Cell Physiol Biochem Pharmacol 2015;37:2323–38. https://doi.org/10.1159/000438587.Search in Google Scholar PubMed
92. Fic, M, Podhorska-Okolow, M, Dziegiel, P, Gebarowska, E, Wysocka, T, Drag-Zalesinska, M, et al.. Effect of melatonin on cytotoxicity of doxorubicin toward selected cell lines (human keratinocytes, lung cancer cell line A-549, laryngeal cancer cell line Hep-2). Vivo 2007;1:513–8.Search in Google Scholar
93. Li, Y, Seto, E. HDACs and HDAC inhibitors in cancer development and therapy. Cold Spring Harb Perspect Med 2016;6:a026831 https://doi.org/10.1101/cshperspect.a026831.Search in Google Scholar PubMed PubMed Central
94. Yang, R, Wu, Y, Wang, M, Sun, Z, Zou, J, Zhang, Y, et al.. HDAC9 promotes glioblastoma growth via TAZ-mediated EGFR pathway activation. Oncotarget 2015;10:7644. https://doi.org/10.18632/oncotarget.3223.Search in Google Scholar PubMed PubMed Central
95. Ma, Z, Liu, D, Di, S, Zhang, Z, Li, W, Zhang, J, et al.. Histone deacetylase 9 downregulation decreases tumor growth and promotes apoptosis in non-small cell lung cancer after melatonin treatment. J Pineal Res 2019;67:e12587. https://doi.org/10.1111/jpi.12587.Search in Google Scholar PubMed
96. Chao, YC, Lee, KY, Wu, SM, Kuo, DY, Shueng, PW, Lin, CW. Melatonin downregulates PD-L1 expression and modulates tumor immunity in KRAS-mutant non-small cell lung cancer. Int J Mol Sci 2021;22:5649. https://doi.org/10.3390/ijms22115649.Search in Google Scholar PubMed PubMed Central
97. Uras, IZ, Moll, HP, Casanova, E. Targeting KRAS mutant non-small-cell lung cancer: past, present, and Future. Int J Mol Sci 2020;21:4325. https://doi.org/10.3390/ijms21124325.Search in Google Scholar PubMed PubMed Central
98. Schoenfeld, AJ, Rizvi, H, Bandlamudi, C, Sauter, JL, Travis, WD, Rekhtman, N, et al.. Clinical and molecular correlates of PD-L1 expression in patients with lung adenocarcinomas. Ann Oncol 2020;31:599–608. https://doi.org/10.1016/j.annonc.2020.01.065.Search in Google Scholar PubMed PubMed Central
99. Iwazaki, RS, Endo, EH, Ueda-Nakamura, T, Nakamura, CV, Garcia, LB, Filho, BPD. In vitro antifungal activity of the berberine and its synergism with fluconazole. Antonie Leeuwenhoek 2009;97:201. https://doi.org/10.1007/s10482-009-9394-8.Search in Google Scholar PubMed
100. Kuo, HP, Chuang, TC, Tsai, SC, Tseng, HH, Hsu, SC, Chen, YC, et al.. Berberine, an isoquinoline alkaloid, inhibits the metastatic potential of breast cancer cells via Akt pathway modulation. J Agric Food Chem 2012;60:9649–58. https://doi.org/10.1021/jf302832n.Search in Google Scholar PubMed
101. Tong, N, Zhang, JI, Chen, Y, Li, Z, Luo, Y, Zuo, HU, et al.. Berberine sensitizes mutliple human cancer cells to the anticancer effects of doxorubicin in vitro. Oncol Lett 2012;3:1263–7. https://doi.org/10.3892/ol.2012.644.Search in Google Scholar PubMed PubMed Central
102. Scorrano, L, Ashiya, M, Buttle, K, Weiler, S, Oakes, SA, Mannella, CA, et al.. A distinct pathway remodels mitochondrial cristae and mobilizes cytochrome c during apoptosis. Dev Cell 2002;2:55–67. https://doi.org/10.1016/s1534-5807(01)00116-2.Search in Google Scholar PubMed
103. Stewart, SA, Hahn, WC, O’Connor, BF, Banner, EN, Lundberg, AS, Modha, P, et al.. Telomerase contributes to tumorigenesis by a telomere length-independent mechanism. Proc Natl Acad Sci USA 2002;99:12606–11. https://doi.org/10.1073/pnas.182407599.Search in Google Scholar PubMed PubMed Central
104. Iwazaki, RS, Endo, EH, Ueda-Nakamura, T, Nakamura, CV, Garcia, LB, Filho, BPD. In vitro antifungal activity of the berberine and its synergism with fluconazole. Antonie Leeuwenhoek 2009;176:81–91. https://doi.org/10.1007/s10482-009-9394-8.Search in Google Scholar
105. Rabinowitz, JD, White, E. Autophagy and metabolism. Science. 2010;330:1344-8. https://doi.org/10.1126/science.1193497.Search in Google Scholar PubMed PubMed Central
106. Yu, L, Chen, Y, Tooze, SA. Autophagy pathway: cellular and molecular mechanisms. Autophagy 2018;14:207–15. https://doi.org/10.1080/15548627.2017.1378838.Search in Google Scholar PubMed PubMed Central
107. Sahu, R, Kaushik, S, Clement, CC, Cannizzo, ES, Scharf, B, Follenzi, A, et al.. Microautophagy of cytosolic proteins by late endosomes. Dev Cell 2011;20:131–9. https://doi.org/10.1016/j.devcel.2011.02.011.Search in Google Scholar
108. Orenstein, SJ, Cuervo, AM. Chaperone-mediated autophagy: molecular mechanisms and physiological relevance. Semin Cell Dev Biol 2010;21:719–26. https://doi.org/10.1016/j.semcdb.2010.02.005.Search in Google Scholar PubMed PubMed Central
109. Mirza‐Aghazadeh‐Attari, M, Mohammadzadeh, A, Adib, A, Darband, SG, Sadighparvar, S, Mihanfar, A, et al.. Melatonin-mediated regulation of autophagy: making sense of double-edged sword in cancer. J Cell Physiol 2019;234:17011–22. https://doi.org/10.1002/jcp.28435.Search in Google Scholar PubMed
110. Filomeni, G, De Zio, D, Cecconi, F. Oxidative stress and autophagy: the clash between damage and metabolic needs. Cell Death Differ 2015;22:377–88. https://doi.org/10.1038/cdd.2014.150.Search in Google Scholar PubMed PubMed Central
111. Yun, CW, Lee, SH. The roles of autophagy in cancer. Int J Mol Sci 2018;19:3466. https://doi.org/10.3390/ijms19113466.Search in Google Scholar PubMed PubMed Central
112. Sagrillo-Fagundes, L, Bienvenue-Pariseault, J, Vaillancourt, C. Melatonin: the smart molecule that differentially modulates autophagy in tumor and normal placental cells. Plos One 2019;14:e0202458 https://doi.org/10.1371/journal.pone.0202458.Search in Google Scholar PubMed PubMed Central
113. He, B, Chen, Q, Zhou, D, Wang, L, Liu, Z. Role of reciprocal interaction between autophagy and endoplasmic reticulum stress in apoptosis of human bronchial epithelial cells induced by cigarette smoke extract. IUBMB Life 2019;71:66–80. https://doi.org/10.1002/iub.1937.Search in Google Scholar PubMed
114. Chen, X, Hao, B, Li, D, Reiter, RJ, Bai, Y, Abay, B, et al.. Melatonin inhibits lung cancer development by reversing the Warburg effect via stimulating the SIRT3/PDH axis. J Pineal Res 2021;71:e12755. https://doi.org/10.1111/jpi.12755.Search in Google Scholar PubMed
115. Vara-Perez, M, Felipe-Abrio, B, Agostinis, P. Mitophagy in cancer: a tale of adaptation. Cells 2019;8:493. https://doi.org/10.3390/cells8050493.Search in Google Scholar PubMed PubMed Central
116. López-Abente, G, Núñez, O, Fernández-Navarro, P, Barros-Dios, JM, Martín-Méndez, I, Bel-Lan, A, et al.. Residential radon and cancer mortality in Galicia, Spain. Sci Total Environ 2018;610–611:1125–32. https://doi.org/10.1016/j.scitotenv.2017.08.144.Search in Google Scholar PubMed
117. Wu, Q, Fang, L, Yang, Y, Wang, A, Chen, X, Sun, J, et al.. Protection of melatonin against long-term radon exposure-caused lung injury. Environ Toxicol 2021;36:472–83. https://doi.org/10.1002/tox.23052.Search in Google Scholar PubMed
118. Ordoñez, R, Fernández, A, Prieto‐Domínguez, N, Martínez, L, García‐Ruiz, C, Fernández‐Checa, JC, et al.. Ceramide metabolism regulates autophagy and apoptotic-cell death induced by melatonin in liver cancer cells. J Pineal Res 2015;59:178–89. https://doi.org/10.1111/jpi.12249.Search in Google Scholar PubMed PubMed Central
119. Chok, KC, Koh, RY, Ng, MG, Ng, PY, Chye, SM. Melatonin induces autophagy via reactive oxygen species-mediated endoplasmic reticulum stress pathway in colorectal cancer cells. Molecules 2021;26:5038. https://doi.org/10.3390/molecules26165038.Search in Google Scholar PubMed PubMed Central
120. Bennukul, K, Numkliang, S, Leardkamolkarn, V. Melatonin attenuates cisplatin-induced HepG2 cell death via the regulation of mTOR and ERCC1 expressions. World J Hepatol 2014;6:230. https://doi.org/10.4254/wjh.v6.i4.230.Search in Google Scholar PubMed PubMed Central
121. Guo, JY, Karsli-Uzunbas, G, Mathew, R, Aisner, SC, Kamphorst, JJ, Strohecker, AM, et al.. Autophagy suppresses progression of K-ras-induced lung tumors to oncocytomas and maintains lipid homeostasis. Genes Dev 2013;27:1447–61. https://doi.org/10.1101/gad.219642.113.Search in Google Scholar PubMed PubMed Central
122. Maestroni, GJ, Conti, A, Pierpaoli, W. Role of the pineal gland in immunity: circadian synthesis and release of melatonin modulates the antibody response and antagonizes the immunosuppressive effect of corticosterone. J Neuroimmunol 1986;13:19–30. https://doi.org/10.1016/0165-5728(86)90047-0.Search in Google Scholar PubMed
123. Moradkhani, F, Moloudizargari, M, Fallah, M, Asghari, N, Heidari Khoei, H, Asghari, MH. Immunoregulatory role of melatonin in cancer. J Cell Physiol 2020;235:745–57. https://doi.org/10.1002/jcp.29036.Search in Google Scholar PubMed
124. Liu, F, Ng, TB, Fung, MC. Pineal indoles stimulate the gene expression of immunomodulating cytokines. J Neural Transm 2001;108:397–405. https://doi.org/10.1007/s007020170061.Search in Google Scholar PubMed
125. Huang, YM, Liu, H, Wei, J-E, Lin, J, Zhou, R-X. Effect of pinealectomy and melatonin on IL-7 expression of rat thymic epithelial cells. Acta Anat. Sin 2008;39:901–5.Search in Google Scholar
126. Carrillo-Vico, A, Lardone, PJ, Álvarez-Sánchez, N, Rodríguez-Rodríguez, A, Guerrero, JM. Melatonin: buffering the immune system. Int J Mol Sci 2013;14:8638–83. https://doi.org/10.3390/ijms14048638.Search in Google Scholar PubMed PubMed Central
127. Kühlwein, E, Irwin, M. Melatonin modulation of lymphocyte proliferation and Th1/Th2 cytokine expression. J Neuroimmunol 2001;117:51–7. https://doi.org/10.1016/s0165-5728(01)00325-3.Search in Google Scholar PubMed
128. Mocchegiani, E, Perissin, L, Santarelli, L, Tibaldi, A, Zorzet, S, Rapozzi, V, et al.. Melatonin administration in tumor-bearing mice (intact and pinealectomized) in relation to stress, zinc, thymulin and IL-2. Int J Immunopharm 1999;21:27–46. https://doi.org/10.1016/s0192-0561(98)00067-8.Search in Google Scholar PubMed
129. Yang, W, Kang, X, Qin, N, Li, F, Jin, X, Ma, Z, et al.. Melatonin protects chondrocytes from impairment induced by glucocorticoids via NAD+-dependent SIRT1. Steroids 2017;126:24–9. https://doi.org/10.1016/j.steroids.2017.08.005.Search in Google Scholar PubMed
130. Bishayee, K, Ghosh, S, Mukherjee, A, Sadhukhan, R, Mondal, J. Khuda‐Bukhsh, AR. Quercetin induces cytochrome-c release and ROS accumulation to promote apoptosis and arrest the cell cycle in G2/M, in cervical carcinoma: signal cascade and drug-DNA interaction. Cell Prolif 2013;46:153–63. https://doi.org/10.1111/cpr.12017.Search in Google Scholar PubMed PubMed Central
131. Panieri, E, Gogvadze, V, Norberg, E, Venkatesh, R, Orrenius, S, Zhivotovsky, B. Reactive oxygen species generated in different compartments induce cell death, survival, or senescence. Free Radic Biol Med 2013;57:176–87. https://doi.org/10.1016/j.freeradbiomed.2012.12.024.Search in Google Scholar PubMed
132. Deponte, M. Glutathione catalysis and the reaction mechanisms of glutathione-dependent enzymes. Biochim Biophys Acta Gen Subj 2013;1830:3217–66. https://doi.org/10.1016/j.bbagen.2012.09.018.Search in Google Scholar PubMed
133. Mortezaee, K, Najafi, M, Farhood, B, Ahmadi, A, Potes, Y, Shabeeb, D, et al.. Modulation of apoptosis by melatonin for improving cancer treatment efficiency: an updated review. Life Sci 2019;228:228–41. https://doi.org/10.1016/j.lfs.2019.05.009.Search in Google Scholar PubMed
134. Zhou, B, Lu, Q, Liu, J, Fan, L, Wang, Y, Wei, W, et al.. Melatonin increases the sensitivity of hepatocellular carcinoma to sorafenib through the PERK-ATF4-Beclin1 pathway. Int J Biol Sci 2019;15:1905.10.7150/ijbs.32550Search in Google Scholar PubMed PubMed Central
135. Fernández-Gil, B, Moneim, AE, Ortiz, F, Shen, YQ, Soto-Mercado, V, Mendivil-Perez, M, et al.. Melatonin protects rats from radiotherapy-induced small intestine toxicity. Plos One 2017;12:e0174474 https://doi.org/10.1371/journal.pone.0174474.Search in Google Scholar PubMed PubMed Central
136. Lissoni, P, Chilelli, M, Villa, S, Cerizza, L, Tancini, G. Five years survival in metastatic non-small cell lung cancer patients treated with chemotherapy alone or chemotherapy and melatonin: a randomized trial. J Pineal 2003;35:12–5. https://doi.org/10.1034/j.1600-079x.2003.00032.x.Search in Google Scholar PubMed
137. Seely, D, Legacy, M, Auer, RC, Fazekas, A, Delic, E, Anstee, C, et al.. Adjuvant melatonin for the prevention of recurrence and mortality following lung cancer resection (AMPLCaRe): a randomized placebo controlled clinical trial. EClinicalMedicine 2021;33:100763. https://doi.org/10.1016/j.eclinm.2021.100763.Search in Google Scholar PubMed PubMed Central
138. Hrushesky, WJ, Lis, CG, Levin, RD, Grutsch, JF, Birdsall, T, Wood, PA, et al.. Daily evening melatonin prolongs survival among patients with advanced non-small-cell lung cancer. Biol Rhythm Res 2021;0:1–15. https://doi.org/10.1080/09291016.2021.1899485.Search in Google Scholar
139. Li, M, Hao, B, Zhang, M, Reiter, RJ, Lin, S, Zheng, T, et al.. Melatonin enhances radiofrequency-induced NK antitumor immunity, causing cancer metabolism reprogramming and inhibition of multiple pulmonary tumor development. Sig Transduct Target Ther 2021;6:1–14. https://doi.org/10.1038/s41392-021-00745-7.Search in Google Scholar PubMed PubMed Central
140. Preuer, K, Lewis, RP, Hochreiter, S, Bender, A, Bulusu, KC, Klambauer, G. Deep synergy: predicting anti-cancer drug synergy with deep learning. Bioinformatics 2018;34:1538–46. https://doi.org/10.1093/bioinformatics/btx806.Search in Google Scholar PubMed PubMed Central
141. Norsa, A, Martino, V. Somatostatin, retinoids, melatonin, vitamin D, bromocriptine, and cyclophosphamide in advanced non–small-cell lung cancer patients with low performance status. Cancer Biother Radiopharm 2006;21:68–73. https://doi.org/10.1089/cbr.2006.21.68.Search in Google Scholar PubMed
142. Kelly, K. Challenges in defining and identifying patients with non-small cell lung cancer and poor performance status. Semin Oncol 2004;31:3–7. https://doi.org/10.1053/j.seminoncol.2004.10.003.Search in Google Scholar PubMed
143. Lissoni, P, Brivio, F, Fumagalli, L, Messina, G, Vigore, L, Parolini, D, et al.. Neuroimmunomodulation in medical oncology: application of psychoneuroimmunology with subcutaneous low-dose IL-2 and the pineal hormone melatonin in patients with untreatable metastatic solid tumors. Anticancer Res 2008;28:1377–81.Search in Google Scholar
144. Lissoni, P. Biochemotherapy with standard chemotherapies plus the pineal hormone melatonin in the treatment of advanced solid neoplasms. Pathol Biol 2007;55:201–4. https://doi.org/10.1016/j.patbio.2006.12.025.Search in Google Scholar PubMed
145. Bailly, C. Irinotecan: 25 years of cancer treatment. Pharmacol Res 2019;148:104398. https://doi.org/10.1016/j.phrs.2019.104398.Search in Google Scholar PubMed
146. Kontek, R, Nowicka, H. The modulatory effect of melatonin on genotoxicity of irinotecan in healthy human lymphocytes and cancer cells. Drug Chem Toxicol 2013;36:335–42. https://doi.org/10.3109/01480545.2012.737805.Search in Google Scholar PubMed
© 2022 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Letter to the Editor
- COVID-19 pandemic: transmission of SARS-CoV-2 in animals, a risk for human beings
- Original Articles
- Anti Mullerian hormone as a diagnostic tool for polycystic ovary syndrome in women of reproductive age with morbid obesity
- Potential tumor marker for hepatocellular carcinoma identification: PI3K and pro-inflammatory cytokines (TGF-β, IL-1, and IL-6)
- The investigation of the frequency of the alpha-1-antitrypsin phenotype in patients with liver cirrhosis
- Anti-oxidant effect of metformin through AMPK/SIRT1/PGC-1α/SIRT3– independent GPx1 expression in the heart of mice with endometriosis
- Hypoxia-inducible factor-1α and ischemia-modified albumin levels in intensive care COVID-19 Patients
- Association between TP53 Arg72Pro variant and recurrent pregnancy loss in the Greek population
- Selective estrogen receptor α and β antagonist aggravate cardiovascular dysfunction in type 2 diabetic ovariectomized female rats
- Adrenocorticotropic hormone (ACTH) level and adrenal deficiency in patients with mucocutaneous pemphigus
- The effect of resistance training on serum levels of sex hormones and sperm quality in male rats under X-ray radiation
- The effect of high-intensity interval training on serum and adipose tissues vaspin levels in rats fed a high-fat high-sucrose diet
- Anti-migratory effect of curcumin on A-549 lung cancer cells via epigenetic reprogramming of RECK/ matrix metalloproteinase axis
- Efficacy of rectal progesterone on maternal and neonatal outcomes in pregnant women with Preterm Premature Rupture of membranes: a triple-blind randomised clinical trial
- Case Report
- Ovarian tissue cryopreservation in Malaysia: a case series
- Review Articles
- An overview of prognostic value of neurologic and cardiac biomarkers in patients with COVID-19 sequelae
- Potential role of melatonin in prevention and treatment of lung cancer
- Esketamine–A quick-acting novel antidepressant without the disadvantages of ketamine
Articles in the same Issue
- Frontmatter
- Letter to the Editor
- COVID-19 pandemic: transmission of SARS-CoV-2 in animals, a risk for human beings
- Original Articles
- Anti Mullerian hormone as a diagnostic tool for polycystic ovary syndrome in women of reproductive age with morbid obesity
- Potential tumor marker for hepatocellular carcinoma identification: PI3K and pro-inflammatory cytokines (TGF-β, IL-1, and IL-6)
- The investigation of the frequency of the alpha-1-antitrypsin phenotype in patients with liver cirrhosis
- Anti-oxidant effect of metformin through AMPK/SIRT1/PGC-1α/SIRT3– independent GPx1 expression in the heart of mice with endometriosis
- Hypoxia-inducible factor-1α and ischemia-modified albumin levels in intensive care COVID-19 Patients
- Association between TP53 Arg72Pro variant and recurrent pregnancy loss in the Greek population
- Selective estrogen receptor α and β antagonist aggravate cardiovascular dysfunction in type 2 diabetic ovariectomized female rats
- Adrenocorticotropic hormone (ACTH) level and adrenal deficiency in patients with mucocutaneous pemphigus
- The effect of resistance training on serum levels of sex hormones and sperm quality in male rats under X-ray radiation
- The effect of high-intensity interval training on serum and adipose tissues vaspin levels in rats fed a high-fat high-sucrose diet
- Anti-migratory effect of curcumin on A-549 lung cancer cells via epigenetic reprogramming of RECK/ matrix metalloproteinase axis
- Efficacy of rectal progesterone on maternal and neonatal outcomes in pregnant women with Preterm Premature Rupture of membranes: a triple-blind randomised clinical trial
- Case Report
- Ovarian tissue cryopreservation in Malaysia: a case series
- Review Articles
- An overview of prognostic value of neurologic and cardiac biomarkers in patients with COVID-19 sequelae
- Potential role of melatonin in prevention and treatment of lung cancer
- Esketamine–A quick-acting novel antidepressant without the disadvantages of ketamine