Startseite Algebraic dependence of the Gauss maps on minimal surfaces immersed in ℝ n+1
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Algebraic dependence of the Gauss maps on minimal surfaces immersed in ℝ n+1

  • Si Duc Quang EMAIL logo und Do Thi Thuy Hang
Veröffentlicht/Copyright: 14. November 2024
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Let S 1 , S 2 , S 3 be oriented non-flat minimal surfaces immersed in n + 1 ( n 2 ) with the Gauss maps G 1 , G 2 , G 3 into n ( ) , respectively. Assume that there are conformal diffeomorphisms Φ 2 , Φ 3 of S 1 onto S 2 , S 3 respectively and let f 1 = G 1 , f 2 = G 2 Φ 2 , f 3 = G 3 Φ 3 . In this paper, we will show that f 1 , f 2 , f 3 are algebraic dependence, i.e., f 1 f 2 f 3 0 , if they have the same inverse images for a few hyperplanes of n ( ) in general position with some certain conditions.

MSC 2020: 53A10; 53C42

References

[1] L. V. Ahlfors, An extension of Schwarz’s lemma, Trans. Amer. Math. Soc. 43 (1938), no. 3, 359–364. 10.1090/S0002-9947-1938-1501949-6Suche in Google Scholar

[2] H. Fujimoto, Unicity theorems for the Gauss maps of complete minimal surfaces, J. Math. Soc. Japan 45 (1993), no. 3, 481–487. 10.2969/jmsj/04530481Suche in Google Scholar

[3] H. Fujimoto, Unicity theorems for the Gauss maps of complete minimal surfaces. II, Kodai Math. J. 16 (1993), no. 3, 335–354. 10.2996/kmj/1138039844Suche in Google Scholar

[4] H. Fujimoto, Value Distribution Theory of the Gauss Map of Minimal Surfaces in 𝐑 m , Aspects of Math. E21, Friedrich Vieweg & Sohn, Braunschweig, 1993. 10.1007/978-3-322-80271-2_1Suche in Google Scholar

[5] A. Huber, On subharmonic functions and differential geometry in the large, Comment. Math. Helv. 32 (1957), 13–72. 10.1007/BF02564570Suche in Google Scholar

[6] L. Karp, Subharmonic functions on real and complex manifolds, Math. Z. 179 (1982), no. 4, 535–554. 10.1007/BF01215065Suche in Google Scholar

[7] R. Osserman, On complete minimal surfaces, Arch. Ration. Mech. Anal. 13 (1963), 392–404. 10.1007/BF01262706Suche in Google Scholar

[8] J. Park and M. Ru, Unicity results for Gauss maps of minimal surfaces immersed in m , J. Geom. 108 (2017), no. 2, 481–499. 10.1007/s00022-016-0353-zSuche in Google Scholar

[9] D. T. Pham and V. D. Pham, Algebraic dependences of meromorphic mappings in several complex variables, Ukrainian Math. J. 62 (2010), no. 7, 1073–1089. 10.1007/s11253-010-0414-7Suche in Google Scholar

[10] S. D. Quang, Algebraic dependences of meromorphic mappings sharing few moving hyperplanes, Ann. Polon. Math. 108 (2013), no. 1, 61–73. 10.4064/ap108-1-5Suche in Google Scholar

[11] M. Ru, A uniqueness theorem with moving targets without counting multiplicity, Proc. Amer. Math. Soc. 129 (2001), no. 9, 2701–2707. 10.1090/S0002-9939-01-06040-3Suche in Google Scholar

[12] W. Stoll, On the propagation of dependences, Pacific J. Math. 139 (1989), no. 2, 311–337. 10.2140/pjm.1989.139.311Suche in Google Scholar

[13] P. D. Thoan, Algebraic dependences of Gauss maps of algebraic complete minimal surfaces sharing hyperplanes without counting multiplicities, An. Univ. Craiova Ser. Mat. Inform. 46 (2019), no. 1, 125–138. Suche in Google Scholar

[14] P. D. Thoan, P. V. Duc and S. D. Quang, Algebraic dependence and unicity theorem with a truncation level to 1 of meromorphic mappings sharing moving targets, Bull. Math. Soc. Sci. Math. Roumanie (N. S.) 56(104) (2013), no. 4, 513–526. Suche in Google Scholar

[15] S. T. Yau, Some function-theoretic properties of complete Riemannian manifold and their applications to geometry, Indiana Univ. Math. J. 25 (1976), no. 7, 659–670. 10.1512/iumj.1976.25.25051Suche in Google Scholar

Received: 2024-01-22
Revised: 2024-05-29
Accepted: 2024-06-12
Published Online: 2024-11-14
Published in Print: 2025-06-01

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 28.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/gmj-2024-2066/html
Button zum nach oben scrollen