Startseite Rings additively generated by certain periodic elements
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Rings additively generated by certain periodic elements

  • Huanyin Chen und Marjan Sheibani ORCID logo
Veröffentlicht/Copyright: 14. November 2024
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

We present new characterizations of the rings additively generalized certain periodic elements (idempotent, tripotent and nilpotent). We prove that such rings are completely determined by the additive decompositions of their square elements. This improves the results of Chen and Sheibani [J. Algebra Appl. 16 (2017), 1750178] and Zhou [J. Algebra Appl. 16 (2017), 1850009].

MSC 2020: 16E50; 16U40

Acknowledgements

The authors would like to thank the referees for their useful suggestions for the improvement of this paper.

References

[1] M. S. Abdolyousefi and H. Chen, Matrices over Zhou nil-clean rings, Comm. Algebra 46 (2018), no. 4, 1527–1533. 10.1080/00927872.2017.1347666Suche in Google Scholar

[2] A. N. Abyzov, Strongly q-nil-clean rings, Sibirsk. Mat. Zh. 60 (2019), no. 2, 257–273; translation in Sib. Math. J. 60 (2019), no. 2, 197–208. Suche in Google Scholar

[3] A. N. Abyzov, P. V. Danchev and D. T. Tapkin, Rings with x n + x or x n - x nilpotent, J. Algebra Appl. 22 (2023), no. 1, Article ID 2350024. Suche in Google Scholar

[4] A. N. Abyzov and D. T. Tapkin, On rings with x n - x nilpotent, J. Algebra Appl. 21 (2022), no. 6, Article ID 2250111. 10.1142/S0219498822501110Suche in Google Scholar

[5] M. Bien, P. Danchev and M. Ramezan-Nassab, Rings additively generalized by periodic elements, J. Algebra Appl. 24 (2025), 10.1142/S0219498825503220. 10.1142/S0219498825503220Suche in Google Scholar

[6] S. Breaz, P. Danchev and Y. Zhou, Rings in which every element is either a sum or a difference of a nilpotent and an idempotent, J. Algebra Appl. 15 (2016), no. 8, Article ID 1650148. 10.1142/S0219498816501486Suche in Google Scholar

[7] H. Chen and M. S. Abdolyousefi, Rings additively generated by idempotents and nilpotents, Comm. Algebra 49 (2021), no. 4, 1781–1787. 10.1080/00927872.2020.1852410Suche in Google Scholar

[8] H. Chen and M. Sheibani, Strongly 2-nil-clean rings, J. Algebra Appl. 16 (2017), no. 9, Article ID 1750178. 10.1142/S021949881750178XSuche in Google Scholar

[9] H. Chen and M. Sheibani, Theory of Clean Rings and Matrices, World Scientific, Hackensack, 2023. 10.1142/12959Suche in Google Scholar

[10] A. B. Gorman and A. Diesl, Ideally nil clean rings, Comm. Algebra 49 (2021), no. 11, 4788–4799. 10.1080/00927872.2021.1929276Suche in Google Scholar

[11] M. T. Koşan, T. Yildirim and Y. Zhou, Rings with x n - x nilpotent, J. Algebra Appl. 19 (2020), no. 4, Article ID 2050065. 10.1142/S0219498820500656Suche in Google Scholar

[12] T. Koşan, Z. Wang and Y. Zhou, Nil-clean and strongly nil-clean rings, J. Pure Appl. Algebra 220 (2016), no. 2, 633–646. 10.1016/j.jpaa.2015.07.009Suche in Google Scholar

[13] M. Sheibani Abdolyousefi and H. Chen, Rings in which elements are sums of tripotents and nilpotents, J. Algebra Appl. 17 (2018), no. 3, Article ID 1850042. 10.1142/S0219498818500421Suche in Google Scholar

[14] G. Tang, Y. Zhou and H. Su, Matrices over a commutative ring as sums of three idempotents or three involutions, Linear Multilinear Algebra 67 (2019), no. 2, 267–277. 10.1080/03081087.2017.1417969Suche in Google Scholar

[15] Z. Ying, T. Koşan and Y. Zhou, Rings in which every element is a sum of two tripotents, Canad. Math. Bull. 59 (2016), no. 3, 661–672. 10.4153/CMB-2016-009-0Suche in Google Scholar

[16] Y. Zhou, Rings in which elements are sums of nilpotents, idempotents and tripotents, J. Algebra Appl. 17 (2018), no. 1, Article ID 1850009. 10.1142/S0219498818500093Suche in Google Scholar

Received: 2024-02-16
Revised: 2024-05-23
Accepted: 2024-06-03
Published Online: 2024-11-14
Published in Print: 2025-06-01

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 29.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/gmj-2024-2063/html
Button zum nach oben scrollen