Startseite The multiplicative Lie algebra on general linear groups
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

The multiplicative Lie algebra on general linear groups

  • Akshay Kumar , Seema Kushwaha und Sumit Kumar Upadhyay EMAIL logo
Veröffentlicht/Copyright: 14. November 2024
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The main aim of this paper is to study an obvious linear representation of a multiplicative Lie algebra. Also, we find some criteria to determine all possible multiplicative Lie algebra structures on a general linear group and we show that the general linear group on a finite field is a Lie simple group.

MSC 2020: 20N99; 20E99; 20F99

Funding statement: The second named author is thankful to IIIT Allahabad for providing SEED grant. The third named author is thankful to National Board of Higher Mathematics, Government of India (NBHM) for the financial support for the project entitled “Linear Representation of Multiplicative Lie Algebra” (02011/19/2023/NBHM/R & D-II/5954).

Acknowledgements

We are extremely thankful to Professor Ramji Lal for his continuous support, discussion and encouragement.

References

[1] A. Bak, G. Donadze, N. Inassaridze and M. Ladra, Homology of multiplicative Lie rings, J. Pure Appl. Algebra 208 (2007), no. 2, 761–777. 10.1016/j.jpaa.2006.03.029Suche in Google Scholar

[2] G. J. Ellis, On five well-known commutator identities, J. Aust. Math. Soc. Ser. A 54 (1993), no. 1, 1–19. 10.1017/S1446788700036934Suche in Google Scholar

[3] A. Kumar, D. Pal, S. Kushwaha and S. K. Upadhyay, The Schur multiplier of some finite multiplicative Lie algebras, J. Lie Theory 34 (2024), no. 2, 423–436. Suche in Google Scholar

[4] R. Lal and S. K. Upadhyay, Multiplicative Lie algebras and Schur multiplier, J. Pure Appl. Algebra 223 (2019), no. 9, 3695–3721. 10.1016/j.jpaa.2018.12.003Suche in Google Scholar

[5] M. S. Pandey, R. Lal and S. K. Upadhyay, Lie commutator, solvability and nilpotency in multiplicative Lie algebras, J. Algebra Appl. 20 (2021), no. 8, Paper No. 2150138. 10.1142/S0219498821501383Suche in Google Scholar

[6] M. S. Pandey and S. K. Upadhyay, Classification of multiplicative Lie algebra structures on a finite group, Colloq. Math. 168 (2022), no. 1, 25–34. 10.4064/cm8397-12-2020Suche in Google Scholar

[7] F. Point and P. Wantiez, Nilpotency criteria for multiplicative Lie algebras, J. Pure Appl. Algebra 111 (1996), no. 1–3, 229–243. 10.1016/0022-4049(95)00115-8Suche in Google Scholar

Received: 2023-10-11
Revised: 2024-08-08
Accepted: 2024-08-14
Published Online: 2024-11-14
Published in Print: 2025-06-01

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 28.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/gmj-2024-2059/html
Button zum nach oben scrollen