Startseite Characterization of multiplicative Jordan n-higher derivations on unital rings
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Characterization of multiplicative Jordan n-higher derivations on unital rings

  • Ab Hamid Kawa ORCID logo , S. N. Hasan , Shakir Ali ORCID logo EMAIL logo und Bilal Ahmad Wani ORCID logo
Veröffentlicht/Copyright: 14. November 2024
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Let m 1 , n 3 be fixed integers, be a unital ring with a nontrivial idempotent, and let ζ m : be a multiplicative Jordan n-higher derivation ( n 3 ) . In this paper, we prove that if c h a r ( ) 2 𝑎𝑛𝑑 n - 1 , then ζ m is an additive Jordan n-higher derivation, more precisely, ζ m ( a ) = D m ( a ) + π m ( a ) for all a , where D m : is an additive higher derivation and π m : is an additive singular Jordan higher derivation.

MSC 2020: 16W10; 47B47

Acknowledgements

The authors are very thankful to the anonymous referee for his/her valuable comments and suggestions, which have improved the manuscript immensely.

References

[1] M. Ashraf, B. A. Wani and F. Wei, Multiplicative * -Lie triple higher derivations of standard operator algebras, Quaest. Math. 42 (2019), no. 7, 857–884. 10.2989/16073606.2018.1502213Suche in Google Scholar

[2] D. Benkovič and N. Širovnik, Jordan derivations of unital algebras with idempotents, Linear Algebra Appl. 437 (2012), no. 9, 2271–2284. 10.1016/j.laa.2012.06.009Suche in Google Scholar

[3] M. Brešar, Jordan mappings of semiprime rings, J. Algebra 127 (1989), no. 1, 218–228. 10.1016/0021-8693(89)90285-8Suche in Google Scholar

[4] M. Brešar, Jordan derivations revisited, Math. Proc. Cambridge Philos. Soc. 139 (2005), no. 3, 411–425. 10.1017/S0305004105008601Suche in Google Scholar

[5] M. Brešar and J. Vukman, Jordan derivations on prime rings, Bull. Aust. Math. Soc. 37 (1988), no. 3, 321–322. 10.1017/S0004972700026927Suche in Google Scholar

[6] M. Brešar and J. Vukman, Jordan ( Θ , ϕ ) -derivations, Glas. Mat. Ser. III 26(46) (1991), no. 1–2, 13–17. Suche in Google Scholar

[7] J. M. Cusack, Jordan derivations on rings, Proc. Amer. Math. Soc. 53 (1975), no. 2, 321–324. 10.1090/S0002-9939-1975-0399182-5Suche in Google Scholar

[8] M. Ferrero and C. Haetinger, Higher derivations of semiprime rings, Comm. Algebra 30 (2002), no. 5, 2321–2333. 10.1081/AGB-120003471Suche in Google Scholar

[9] A. Fošner, F. Wei and Z. Xiao, Nonlinear Lie-type derivations of von Neumann algebras and related topics, Colloq. Math. 132 (2013), no. 1, 53–71. 10.4064/cm132-1-5Suche in Google Scholar

[10] I. N. Herstein, Jordan derivations of prime rings, Proc. Amer. Math. Soc. 8 (1957), 1104–1110. 10.1090/S0002-9939-1957-0095864-2Suche in Google Scholar

[11] A. H. Kawa, S. N. Hasan and B. A. Wani, Multiplicative Jordan n-higher derivations on alternative rings containing idempotents, Asian-Eur. J. Math. 16 (2023), no. 5, Article ID 2350081. 10.1142/S179355712350081XSuche in Google Scholar

[12] A. H. Kawa, S. N. Hasan and B. A. Wani, Multiplicative Jordan type higher derivations of unital rings with non trivial idempotents, Adv. Pure Appl. Math. 14 (2023), no. 1, 36–49. 10.21494/ISTE.OP.2023.0905Suche in Google Scholar

[13] T.-K. Lee and T. C. Quynh, Centralizers and Jordan triple derivations of semiprime rings, Comm. Algebra 47 (2019), no. 1, 236–251. 10.1080/00927872.2018.1472275Suche in Google Scholar

[14] C. Li and X. Fang, Lie triple and Jordan derivable mappings on nest algebras, Linear Multilinear Algebra 61 (2013), no. 5, 653–666. 10.1080/03081087.2012.703186Suche in Google Scholar

[15] J. Li and F. Lu, Additive Jordan derivations of reflexive algebras, J. Math. Anal. Appl. 329 (2007), no. 1, 102–111. 10.1016/j.jmaa.2006.06.019Suche in Google Scholar

[16] W. H. Lin, Nonlinear -Jordan-type derivations on von Neumann algebras, preprint (2018), https://arxiv.org/abs/1805.02037. Suche in Google Scholar

[17] W. H. Lin, Nonlinear * -Lie-type derivations on standard operator algebras, Acta Math. Hungar. 154 (2018), no. 2, 480–500. 10.1007/s10474-017-0783-6Suche in Google Scholar

[18] W.-H. Lin, Nonlinear -Lie-type derivations on von Neumann algebras, Acta Math. Hungar. 156 (2018), no. 1, 112–131. 10.1007/s10474-018-0803-1Suche in Google Scholar

[19] F. Lu, Jordan derivable maps of prime rings, Comm. Algebra 38 (2010), no. 12, 4430–4440. 10.1080/00927870903366884Suche in Google Scholar

[20] W. S. Martindale, III, When are multiplicative mappings additive?, Proc. Amer. Math. Soc. 21 (1969), 695–698. 10.2307/2036449Suche in Google Scholar

[21] C. R. Miers, Lie homomorphisms of operator algebras, Pacific J. Math. 38 (1971), 717–735. 10.2140/pjm.1971.38.717Suche in Google Scholar

[22] A. Nowicki, Inner derivations of higher orders, Tsukuba J. Math. 8 (1984), no. 2, 219–225. 10.21099/tkbjm/1496160039Suche in Google Scholar

[23] X. Qi, Z. Guo and T. Zhang, Characterizing Jordan n-derivations of unital rings containing idempotents, Bull. Iranian Math. Soc. 46 (2020), no. 6, 1639–1658. 10.1007/s41980-019-00348-7Suche in Google Scholar

[24] X. Qi and J. Hou, Lie higher derivations on nest algebras, Commun. Math. Res. 26 (2010), no. 2, 131–143. Suche in Google Scholar

[25] A. M. Sinclair, Jordan homomorphisms and derivations on semisimple Banach algebras, Proc. Amer. Math. Soc. 24 (1970), 209–214. 10.1090/S0002-9939-1970-0250069-3Suche in Google Scholar

[26] A. Taghavi, H. Rohi and V. Darvish, Non-linear *-Jordan derivations on von Neumann algebras, Linear Multilinear Algebra 64 (2016), no. 3, 426–439. 10.1080/03081087.2015.1043855Suche in Google Scholar

[27] J. Vukman and I. Kosi-Ulbl, A note on derivations in semiprime rings, Int. J. Math. Math. Sci. (2005), no. 20, 3347–3350. 10.1155/IJMMS.2005.3347Suche in Google Scholar

[28] F. Wei and Z. Xiao, Higher derivations of triangular algebras and its generalizations, Linear Algebra Appl. 435 (2011), no. 5, 1034–1054. 10.1016/j.laa.2011.02.027Suche in Google Scholar

[29] Z. Xiao and F. Wei, Nonlinear Lie higher derivations on triangular algebras, Linear Multilinear Algebra 60 (2012), no. 8, 979–994. 10.1080/03081087.2011.639373Suche in Google Scholar

[30] F. Zhang, Nonlinear skew Jordan derivable maps on factor von Neumann algebras, Linear Multilinear Algebra 64 (2016), no. 10, 2090–2103. 10.1080/03081087.2016.1139035Suche in Google Scholar

[31] F. Zhang, X. Qi and J. Zhang, Nonlinear 8-Lie higher derivations on factor von Neumann algebras, Bull. Iranian Math. Soc. 42 (2016), no. 3, 659–678. Suche in Google Scholar

[32] J.-H. Zhang and W.-Y. Yu, Jordan derivations of triangular algebras, Linear Algebra Appl. 419 (2006), no. 1, 251–255. 10.1016/j.laa.2006.04.015Suche in Google Scholar

[33] F. Zhao and C. Li, Nonlinear * -Jordan triple derivations on von Neumann algebras, Math. Slovaca 68 (2018), no. 1, 163–170. 10.1515/ms-2017-0089Suche in Google Scholar

Received: 2023-12-21
Revised: 2024-06-15
Accepted: 2024-07-09
Published Online: 2024-11-14
Published in Print: 2025-06-01

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 24.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/gmj-2024-2062/html
Button zum nach oben scrollen