Home Nonlinear mixed Jordan-type derivations on *-algebras
Article
Licensed
Unlicensed Requires Authentication

Nonlinear mixed Jordan-type derivations on *-algebras

  • Nadeem Ur Rehman ORCID logo , Md Arshad Madni ORCID logo and Muzibur Rahman Mozumder ORCID logo EMAIL logo
Published/Copyright: November 14, 2024
Become an author with De Gruyter Brill

Abstract

Let 𝒜 be a unital -algebra over the complex field . For any μ 1 , μ 2 , μ 3 , , μ n 𝒜 , a product μ 1 μ 2 = μ 1 μ 2 + μ 2 μ 1 is called Jordan product and μ 1 μ 2 = μ 1 μ 2 + μ 2 μ 1 is called skew Jordan product. Define P 3 ( μ 1 , μ 2 , μ 3 ) = μ 1 μ 2 μ 3 (called mixed Jordan triple product) and P n ( μ 1 , μ 2 , , μ n ) = μ 1 μ 2 μ n (called mixed Jordan n-product) for all integer n 3 . In this article, it is shown that a map (called nonlinear mixed Jordan n-derivation) φ : 𝒜 𝒜 satisfies φ ( P n ( μ 1 , μ 2 , , μ n ) ) = i = 1 n P n ( μ 1 , , ν i - 1 , φ ( ν i ) , ν i + 1 , , ν n ) for all ν 1 , ν 2 , , ν n 𝒜 if and only if φ is an additive -derivation. As applications, our main result is applied to several special classes of unital -algebras such as prime -algebras, factor von Neumann algebras and von Neumann algebras with no central summands of type I 1 .

MSC 2020: 16W10; 46L10; 47B47

Funding statement: The third author is supported by a research grant MATRICS from DST-SERB with project file number MTR/2022/000153.

Acknowledgements

The authors are thankful to the referee for his/her valuable suggestions and comments which helped us to improve the submitted version of the paper.

References

[1] M. Ashraf, M. S. Akhter and M. A. Ansari, Nonlinear bi-skew Lie-type derivations on factor von Neumann algebras, Comm. Algebra 50 (2022), no. 11, 4766–4780. 10.1080/00927872.2022.2074027Search in Google Scholar

[2] M. Ashraf, M. S. Akhter and M. A. Ansari, Nonlinear bi-skew Jordan-type derivations on factor von Neumann algebras, Filomat 37 (2023), no. 17, 5591–5599. 10.2298/FIL2317591ASearch in Google Scholar

[3] L. Dai and F. Lu, Nonlinear maps preserving Jordan *-products, J. Math. Anal. Appl. 409 (2014), no. 1, 180–188. 10.1016/j.jmaa.2013.07.019Search in Google Scholar

[4] V. Darvish, M. Nouri, M. Razeghi and A. Taghavi, Nonlinear -Jordan triple derivation on prime -algebras, Rocky Mountain J. Math. 50 (2020), no. 2, 543–549. 10.1216/rmj.2020.50.543Search in Google Scholar

[5] B. L. M. Ferreira and F. Wei, Mixed * -Jordan-type derivations on * -algebras, J. Algebra Appl. 22 (2023), no. 5, Paper No. 2350100. 10.1142/S0219498823501001Search in Google Scholar

[6] A. N. Khan, Multiplicative biskew Lie triple derivations on factor von Neumann algebras, Rocky Mountain J. Math. 51 (2021), no. 6, 2103–2114. 10.1216/rmj.2021.51.2103Search in Google Scholar

[7] A. N. Khan and H. Alhazmi, Multiplicative bi-skew Jordan triple derivations on prime * -algebra, Georgian Math. J. 30 (2023), no. 3, 389–396. 10.1515/gmj-2023-2005Search in Google Scholar

[8] L. Kong and J. Zhang, Nonlinear skew Lie derivations on prime * -rings, Indian J. Pure Appl. Math. 54 (2023), no. 2, 475–484. 10.1007/s13226-022-00269-ySearch in Google Scholar

[9] C. Li, F. Lu and X. Fang, Non-linear ξ-Jordan *-derivations on von Neumann algebras, Linear Multilinear Algebra 62 (2014), no. 4, 466–473. 10.1080/03081087.2013.780603Search in Google Scholar

[10] C. Li and D. Zhang, Nonlinear mixed Jordan triple * -derivations on * -algebras, Sibirsk. Mat. Zh. 63 (2022), no. 4, 884–892, Translation in Sib. Math. J. 63 (2022), no. 4, 735–742. 10.1134/S0037446622040140Search in Google Scholar

[11] C. Li, Y. Zhao and F. Zhao, Nonlinear -Jordan-type derivations on -algebras, Rocky Mountain J. Math. 51 (2021), no. 2, 601–612. 10.1216/rmj.2021.51.601Search in Google Scholar

[12] C. J. Li, F. F. Zhao and Q. Y. Chen, Nonlinear skew Lie triple derivations between factors, Acta Math. Sin. (Engl. Ser.) 32 (2016), no. 7, 821–830. 10.1007/s10114-016-5690-1Search in Google Scholar

[13] W. Lin, Nonlinear * -Lie-type derivations on standard operator algebras, Acta Math. Hungar. 154 (2018), no. 2, 480–500. 10.1007/s10474-017-0783-6Search in Google Scholar

[14] W. Lin, Nonlinear -Lie-type derivations on von Neumann algebras, Acta Math. Hungar. 156 (2018), no. 1, 112–131. 10.1007/s10474-018-0803-1Search in Google Scholar

[15] Y. Pang, D. Zhang and D. Ma, The second nonlinear mixed Jordan triple derivable mapping on factor von Neumann algebras, Bull. Iranian Math. Soc. 48 (2022), no. 3, 951–962. 10.1007/s41980-021-00555-1Search in Google Scholar

[16] N. U. Rehman, J. Nisar and M. Nazim, A note on nonlinear mixed Jordan triple derivation on * -algebras, Comm. Algebra 51 (2023), no. 4, 1334–1343. 10.1080/00927872.2022.2134410Search in Google Scholar

[17] P. Šemrl, On Jordan * -derivations and an application, Colloq. Math. 59 (1990), no. 2, 241–251. 10.4064/cm-59-2-241-251Search in Google Scholar

[18] P. Šemrl, Additive derivations of some operator algebras, Illinois J. Math. 35 (1991), no. 2, 234–240. 10.1215/ijm/1255987893Search in Google Scholar

[19] P. Šemrl, Jordan * -derivations of standard operator algebras, Proc. Amer. Math. Soc. 120 (1994), no. 2, 515–518. 10.1090/S0002-9939-1994-1186136-6Search in Google Scholar

[20] A. Taghavi, H. Rohi and V. Darvish, Non-linear *-Jordan derivations on von Neumann algebras, Linear Multilinear Algebra 64 (2016), no. 3, 426–439. 10.1080/03081087.2015.1043855Search in Google Scholar

[21] W. Yu and J. Zhang, Nonlinear -Lie derivations on factor von Neumann algebras, Linear Algebra Appl. 437 (2012), no. 8, 1979–1991. 10.1016/j.laa.2012.05.032Search in Google Scholar

[22] F. Zhang, Nonlinear skew Jordan derivable maps on factor von Neumann algebras, Linear Multilinear Algebra 64 (2016), no. 10, 2090–2103. 10.1080/03081087.2016.1139035Search in Google Scholar

[23] F. Zhao and C. Li, Nonlinear * -Jordan triple derivations on von Neumann algebras, Math. Slovaca 68 (2018), no. 1, 163–170. 10.1515/ms-2017-0089Search in Google Scholar

[24] X. Zhao and X. Fang, The second nonlinear mixed Lie triple derivations on finite von Neumann algebras, Bull. Iranian Math. Soc. 47 (2021), no. 1, 237–254. 10.1007/s41980-020-00380-ySearch in Google Scholar

[25] Y. Zhou, Z. Yang and J. Zhang, Nonlinear mixed Lie triple derivations on prime * -algebras, Comm. Algebra 47 (2019), no. 11, 4791–4796. 10.1080/00927872.2019.1596277Search in Google Scholar

Received: 2024-01-10
Revised: 2024-04-24
Accepted: 2024-05-14
Published Online: 2024-11-14
Published in Print: 2025-06-01

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 24.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/gmj-2024-2061/html
Scroll to top button