Startseite The optimal control problem for systems of integro-differential equations with finite and infinite horizon
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

The optimal control problem for systems of integro-differential equations with finite and infinite horizon

  • Roksolana Lakhva ORCID logo EMAIL logo , Zoia Khaletska ORCID logo und Viktoriia Mogylova ORCID logo
Veröffentlicht/Copyright: 14. November 2024
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this paper, we study the optimal control problem for integro-differential equations on the semi-axis, which are non-linear with respect to the phase variables and linear with respect to the control. We obtained the sufficient conditions for existence of optimal control in terms of the right-hand side and the quality criterion. Also, we studied the relation between the solutions of the problems on infinite and finite intervals when the length of the interval goes to infinity.

References

[1] A. Alawneh, K. Al-Khaled and M. Al-Towaiq, Reliable algorithms for solving integro-differential equations with applications, Int. J. Comput. Math. 87 (2010), no. 7, 1538–1554. 10.1080/00207160802385818Suche in Google Scholar

[2] N. Ali, G. Zaman and I. H. Jung, Stability analysis of delay integro-differential equations of HIV-1 infection model, Georgian Math. J. 27 (2020), no. 3, 331–340. 10.1515/gmj-2018-0011Suche in Google Scholar

[3] A. T. Assanova, S. S. Zhumatov, S. T. Mynbayeva and S. G. Karakenova, On solvability of boundary value problem for a nonlinear Fredholm integro-differential equation, Bull. Karaganda Univ. Math. Ser. 105 (2022), no. 1, 25–34. 10.31489/2022M1/25-34Suche in Google Scholar

[4] O. A. Boĭchuk and I. A. Golovats’ka, Boundary value problems for systems of integro-differential equations, NelÄ«nīĭnÄ« Koliv. 16 (2013), no. 4, 460–474; translation in J. Math. Sci. (N. Y.) 203 (2014), no. 3, 306–321. Suche in Google Scholar

[5] D. S. Dzhumabaev and S. Mynbayeva, A method of solving a nonlinear boundary value problem for the Fredholm integro-differential equation, J. Integral Equations Appl. 33 (2021), no. 1, 53–75. 10.1216/jie.2021.33.53Suche in Google Scholar

[6] T. Jangveladze and Z. Kiguradze, Averaged semi-discrete scheme of sum-approximation for one nonlinear multi-dimensional integro-differential parabolic equation, Georgian Math. J. 27 (2020), no. 3, 367–373. 10.1515/gmj-2019-2068Suche in Google Scholar

[7] J. M. Kean and N. D. Barlow, A spatial model for the succesful biological control of sitona discoidens by Microctonus aethiopoides, J. Appl. Ecology 38 (2001), 162–169. 10.1046/j.1365-2664.2001.00579.xSuche in Google Scholar

[8] O. Kichmarenko and O. Stanzhytskyi, Sufficient conditions for the existence of optimal controls for some classes of functional-differential equations, Nonlinear Dyn. Syst. Theory 18 (2018), no. 2, 196–211. Suche in Google Scholar

[9] O. Kichmarenko and O. Stanzhytskyi, Optimal control problems for some classes of functional-differential equations on the semi-axis, Miskolc Math. Notes 20 (2019), no. 2, 1021–1037. 10.18514/MMN.2019.2739Suche in Google Scholar

[10] T. V. Koval’chuk, V. V. Mogylova and T. V. Shovkoplyas, An averaging method in optimal control problems for impulsive systems, NelÄ«nīĭnÄ« Koliv. 22 (2019), no. 1, 86–97; translation in J. Math. Sci. (N.Y.) 247 (2020), no. 2, 306–321. Suche in Google Scholar

[11] T. V. Koval’chuk, V. V. Mogylova, O. M. Stanzhytskyi and T. V. Shovkoplyas, Application of the averaging method to the problems of optimal control of the impulse systems, Carpathian Math. Publ. 12 (2020), no. 2, 504–521. 10.15330/cmp.12.2.504-521Suche in Google Scholar

[12] V. I. Kravets’, T. V. Koval’chuk, V. V. Mogylova and O. M. Stanzhits’kiĭ, Application of the averaging method to optimal control problems for functional-differential equations, Ukraïn. Mat. Zh. 70 (2018), no. 2, 206–215; translation in Ukrainian Math. J. 70 (2018), no. 2, 232–242. Suche in Google Scholar

[13] P. K. Kythe and P. Puri, Computational Methods for Linear Integral Equations, University of New Orleans, New Orleans, 2002. 10.1007/978-1-4612-0101-4Suche in Google Scholar

[14] V. Mogylova, R. Lakhva and V. I. Kravets’, The problem of optimal control for systems of integro-differential equations (Ukrainian), NelÄ«nīĭnÄ« Koliv. 26 (2019), no. 3, 386–407. Suche in Google Scholar

[15] A.-M. Wazwaz, A comparison study between the modified decomposition method and the traditional methods for solving nonlinear integral equations, Appl. Math. Comput. 181 (2006), no. 2, 1703–1712. 10.1016/j.amc.2006.03.023Suche in Google Scholar

Received: 2024-03-17
Revised: 2024-05-05
Accepted: 2024-06-03
Published Online: 2024-11-14
Published in Print: 2025-06-01

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 23.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/gmj-2024-2065/html
Button zum nach oben scrollen