Startseite On orbits without the Baire property
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

On orbits without the Baire property

  • Alexander Kharazishvili EMAIL logo
Veröffentlicht/Copyright: 14. August 2019
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The following question is considered: when an uncountable commutative group of homeomorphisms of a second category topological space contains a subgroup, no orbit of which possesses the Baire property?

Award Identifier / Grant number: FR-18-6190

Funding statement: This work was partially supported by Shota Rustaveli National Science Foundation, Grant FR-18-6190.

References

[1] W. R. Brian and M. W. Mislove, Every infinite compact group can have a non-measurable subgroup, Topology Appl. 210 (2016), 144–146. 10.1016/j.topol.2016.07.011Suche in Google Scholar

[2] L. Fuchs, Infinite Abelian Groups. Vol. I, Pure Appl. Math. 36, Academic Press, New York, 1970. Suche in Google Scholar

[3] S. Hernández, K. H. Hofmann and S. A. Morris, Nonmeasurable subgroups of compact groups, J. Group Theory 19 (2016), no. 1, 179–189. 10.1515/jgth-2015-0034Suche in Google Scholar

[4] A. Hulanicki, Invariant extensions of the Lebesgue measure, Fund. Math. 51 (1962/1963), 111–115. 10.4064/fm-51-2-111-115Suche in Google Scholar

[5] A. B. Kharazishvili, Transformation Groups and Invariant Measures. Set-theoretical Aspects, World Scientific, River Edge, 1998. 10.1142/3810Suche in Google Scholar

[6] A. B. Kharazishvili, On thick subgroups of uncountable σ-compact locally compact commutative groups, Topology Appl. 156 (2009), no. 14, 2364–2369. 10.1016/j.topol.2009.05.015Suche in Google Scholar

[7] K. Kuratowski, Topology. Vol. I, Academic Press, New York, 1966. Suche in Google Scholar

[8] A. G. Kuroš, Theory of Groups (in Russian), Izdat. “Nauka”, Moscow, 1967. Suche in Google Scholar

[9] J. C. Oxtoby, Measure and Category. A Survey of the Analogies Between Topological and Measure Spaces, Grad. Texts in Math. 2, Springer, New York, 1971. 10.1007/978-1-4615-9964-7Suche in Google Scholar

[10] S. S. Phakadze, The theory of Lebesgue measure (in Russian), Akad. Nauk Gruzin. SSR. Trudy Tbiliss. Mat. Inst. Razmadze 25 (1958), 3–271. Suche in Google Scholar

[11] P. Zakrzewski, Measures on algebraic-topological structures, Handbook of Measure Theory. Vol. I, II, North-Holland, Amsterdam (2002), 1091–1130. 10.1016/B978-044450263-6/50028-2Suche in Google Scholar

Received: 2018-09-15
Accepted: 2019-12-17
Published Online: 2019-08-14
Published in Print: 2019-12-01

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 23.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/gmj-2019-2046/html
Button zum nach oben scrollen