Startseite Methods of comparison of families of real functions in porosity terms
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Methods of comparison of families of real functions in porosity terms

  • Stanisław Kowalczyk ORCID logo und Małgorzata Turowska ORCID logo EMAIL logo
Veröffentlicht/Copyright: 10. Mai 2019
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

We consider some families of real functions endowed with the metric of uniform convergence. In the main results of our work we present two methods of comparison of families of real functions in porosity terms. The first method is very general and may be applied to any family of real functions. The second one is more convenient but can be used only in the case of path continuous functions. We apply the obtained results to compare in terms of porosity the following families of functions: continuous, absolutely continuous, Baire one, Darboux, also functions of bounded variation and porouscontinuous, ρ-upper continuous, ρ-lower continuous functions.

MSC 2010: 54C30; 54C08; 54C50

References

[1] M. Bienias, S. Gła̧b and W. Wilczyński, Cardinality of sets of ρ-upper and ρ-lower continuous functions, Bull. Soc. Sci. Lett. Łódź Sér. Rech. Déform. 64 (2014), no. 2, 71–80. Suche in Google Scholar

[2] J. Borsík and J. Holos, Some properties of porouscontinuous functions, Math. Slovaca 64 (2014), no. 3, 741–750. 10.2478/s12175-014-0237-3Suche in Google Scholar

[3] A. M. Bruckner, Differentiation of Real Functions, Lecture Notes in Math. 659, Springer, Berlin, 1978. 10.1007/BFb0069821Suche in Google Scholar

[4] A. M. Bruckner, R. J. O’Malley and B. S. Thomson, Path derivatives: A unified view of certain generalized derivatives, Trans. Amer. Math. Soc. 283 (1984), no. 1, 97–125. 10.1090/conm/042/807973Suche in Google Scholar

[5] M. Filipczak, G. Ivanova and J. Wódka, Comparison of some families of real functions in porosity terms, Math. Slovaca 67 (2017), no. 5, 1155–1164. 10.1515/ms-2017-0039Suche in Google Scholar

[6] T. Filipczak, On some abstract density topologies, Real Anal. Exchange 14 (1988/89), no. 1, 140–166. 10.2307/44153634Suche in Google Scholar

[7] G. Ivanova, A. Karasińska and E. Wagner-Bojakowska, Comparison of some subfamilies of functions having the Baire property, Tatra Mt. Math. Publ. 65 (2016), 151–159. 10.1515/tmmp-2016-0013Suche in Google Scholar

[8] G. Ivanova and E. Wagner-Bojakowska, On some subclasses of the family of Darboux Baire 1 functions, Opuscula Math. 34 (2014), no. 4, 777–788. 10.7494/OpMath.2014.34.4.777Suche in Google Scholar

[9] S. Kowalczyk and K. Nowakowska, A note on ϱ-upper continuous functions, Tatra Mt. Math. Publ. 44 (2009), 153–158. 10.2478/v10127-009-0055-0Suche in Google Scholar

[10] S. Kowalczyk and K. Nowakowska, A note on the [0]-lower continuous functions, Tatra Mt. Math. Publ. 58 (2014), 111–128. 10.2478/tmmp-2014-0010Suche in Google Scholar

[11] S. Kowalczyk and M. Turowska, On structural properties of porouscontinuous functions, Math. Slovaca 67 (2017), no. 5, 1239–1250. 10.1515/ms-2017-0045Suche in Google Scholar

[12] L. Zajíček, Porosity and σ-porosity, Real Anal. Exchange 13 (1987/88), no. 2, 314–350. 10.2307/44151885Suche in Google Scholar

Received: 2016-12-22
Revised: 2018-03-03
Accepted: 2018-05-21
Published Online: 2019-05-10
Published in Print: 2019-12-01

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 23.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/gmj-2019-2025/html
Button zum nach oben scrollen