Startseite Mixing coded systems
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Mixing coded systems

  • Dawoud Ahmadi Dastjerdi und Maliheh Dabbaghian Amiri EMAIL logo
Veröffentlicht/Copyright: 5. Dezember 2017
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

We show that a coded system is mixing if and only if it is totally transitive. If in addition it has a generator the length of whose elements are relatively prime, then it has strong property P. We continue by showing that a mixing half-synchronized system has such a generator. Moreover, we give an example of a mixing coded system which does not have any generator the length of whose elements are relatively prime.

MSC 2010: 54H20; 37B10; 37A25

References

[1] J. Banks, T. T. D. Nguyen, P. Oprocha, B. Stanley and B. Trotta, Dynamics of spacing shifts, Discrete Contin. Dyn. Syst. 33 (2013), no. 9, 4207–4232. 10.3934/dcds.2013.33.4207Suche in Google Scholar

[2] F. Blanchard, Fully positive topological entropy and topological mixing, Symbolic dynamics and its Applications (New Haven 1991), Contemp. Math. 135, American Mathematical Society, Providence (1992), 95–105. 10.1090/conm/135/1185082Suche in Google Scholar

[3] F. Blanchard and G. Hansel, Systémes codés, Theoret. Comput. Sci. 44 (1986), no. 1, 17–49. 10.1016/0304-3975(86)90108-8Suche in Google Scholar

[4] J. Epperlein, D. Kwietniak and P. Oprocha, Mixing properties in coded systems, preprint (2015), https://arxiv.org/abs/1503.02838. 10.1007/978-3-030-16833-9_10Suche in Google Scholar

[5] D. Fiebig and U. Fiebig, Covers for coded systems, Symbolic Dynamics and its Applications (New Haven 1991), Contemp. Math. 135, American Mathematical Society, Providence (1992), 139–179. 10.1090/conm/135/1185086Suche in Google Scholar

[6] W. Huang and X. Ye, Topological complexity, return times and weak disjointness, Ergodic Theory Dynam. Systems 24 (2004), no. 3, 825–846. 10.1017/S0143385703000543Suche in Google Scholar

[7] W. Huang and X. Ye, Dynamical systems disjoint from any minimal system, Trans. Amer. Math. Soc. 357 (2005), no. 2, 669–694. 10.1090/S0002-9947-04-03540-8Suche in Google Scholar

[8] D. Lind and B. Marcus, An Introduction to Symbolic Dynamics and Coding, Cambridge University Press, Cambridge, 1995. 10.1017/CBO9780511626302Suche in Google Scholar

[9] T. K. Subrahmonian Moothathu and P. Oprocha, Syndetic proximality and scrambled sets, Topol. Methods Nonlinear Anal. 41 (2013), no. 2, 421–461. Suche in Google Scholar

Received: 2016-02-03
Accepted: 2016-05-20
Published Online: 2017-12-05
Published in Print: 2019-12-01

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 28.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/gmj-2017-0058/html
Button zum nach oben scrollen