Startseite On topologies related to the extension of the Lebesgue measure
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

On topologies related to the extension of the Lebesgue measure

  • Jacek Hejduk EMAIL logo und Renata Wiertelak
Veröffentlicht/Copyright: 14. Juli 2018
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The aim of this paper is the investigation of topologies generated by operators related to a complete extension of the Lebesgue measure over the real line. Some properties of such topologies provide their structure and separation axioms.

MSC 2010: 54A10; 28A05

References

[1] M. Filipczak and J. Hejduk, On topologies associated with the Lebesgue measure, Tatra Mt. Math. Publ. 28 (2004), 187–197. Suche in Google Scholar

[2] J. Hejduk, On the density topology with respect to an extension of Lebesgue measure, Real Anal. Exchange 21 (1995/96), no. 2, 811–816. 10.2307/44152696Suche in Google Scholar

[3] J. Hejduk and A. Kharazishvili, On density points with respect to von Neumann’s topology, Real Anal. Exchange 21 (1995/96), no. 1, 278–291. 10.2307/44153916Suche in Google Scholar

[4] J. Hejduk and R. Wiertelak, On the abstract density topologies generated by lower and almost lower density operators, Traditional and Present-day Topics in Real Analysis, University of Łódź, Łódź (2013), 431–447. 10.18778/7525-971-1.25Suche in Google Scholar

[5] J. Hejduk and R. Wiertelak, On the generalization of density topologies on the real line, Math. Slovaca 64 (2014), no. 5, 1267–1276. 10.2478/s12175-014-0274-ySuche in Google Scholar

[6] J. Hejduk and R. Wiertelak, On some properties of 𝒥-approximately continuous functions, Math. Slovaca 67 (2017), no. 6, 1323–1332. 10.1515/ms-2017-0054Suche in Google Scholar

[7] A. B. Kharazishvili, Invariant Extensions of the Lebesgue Measure (in Russian), Tbilis. Gos. Univ., Tbilisi, 1983. Suche in Google Scholar

[8] A. B. Kharazishvili, A nonseparable extension of the Lebesgue measure without new nullsets, Real Anal. Exchange 33 (2008), no. 1, 259–268. 10.14321/realanalexch.33.1.0259Suche in Google Scholar

[9] A. Loranty, Separation axioms of the density type topologies, Reportson Real Analysis, Rowy (2003), 119–128. Suche in Google Scholar

[10] A. Loranty, On the sequential density points, Demonstr. Math. 37 (2004), no. 2, 439–445. 10.1515/dema-2004-0221Suche in Google Scholar

[11] J. Lukeš, J. Malý and L. Zajiček, Fine Topology Methods in Real Analysis and Potential Theory, Lecture Notes in Math. 1189, Springer, Berlin, 1986. 10.1007/BFb0075894Suche in Google Scholar

[12] N. F. G. Martin, Generalized condensation points, Duke Math. J. 28 (1961), 507–514. 10.1215/S0012-7094-61-02848-4Suche in Google Scholar

[13] J. C. Oxtoby, Measure and Category. A Survey of the Analogies between Topological and Measure Spaces, 2nd ed., Grad. Texts in Math. 2, Springer, New York, 1980. 10.1007/978-1-4684-9339-9_22Suche in Google Scholar

[14] E. Szpilrajn, Sur l’extension de la mesure lebesguienne, Fund. Math. 25 (1935), 551–558. 10.4064/fm-25-1-551-558Suche in Google Scholar

[15] S. Tomczyk, On the density topology with respect to an extension of the Lebesgue measure and a fixed sequence of intervals, preprint (2015), http://www.math.uni.lodz.pl/preprints. Suche in Google Scholar

[16] W. Wilczyński, Density topologies, Handbook of Measure Theory. Vol. I, II, North-Holland, Amsterdam (2002), 675–702. 10.1016/B978-044450263-6/50016-6Suche in Google Scholar

[17] W. Wojdowski, A generalization of the density topology, Real Anal. Exchange 32 (2007), no. 2, 349–358. 10.1515/tmmp-2015-0006Suche in Google Scholar

[18] W. Wojdowski, A category analogue of the generalization of Lebesgue density topology, Tatra Mt. Math. Publ. 42 (2009), 11–25. 10.2478/v10127-009-0002-0Suche in Google Scholar

Received: 2016-07-20
Revised: 2016-11-12
Accepted: 2016-11-17
Published Online: 2018-07-14
Published in Print: 2019-12-01

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 22.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/gmj-2018-0050/html
Button zum nach oben scrollen