Home On the Gitik–Shelah theorem
Article
Licensed
Unlicensed Requires Authentication

On the Gitik–Shelah theorem

  • Ryszard Frankiewicz and Joanna Jureczko EMAIL logo
Published/Copyright: August 14, 2019
Become an author with De Gruyter Brill

Abstract

The well-known Gitik–Shelah theorem (1989) touches the problem of existence isomorphisms between some quotient algebras. In this paper, we study a relation between the existence of such isomorphisms and the existence of so-called Kuratowski partitions of adequate Baire spaces. For this purpose, we give strictly combinatorial methods.


Dedicated to Prof. Alexander Kharazishvili


References

[1] B. Aniszczyk and R. Frankiewicz, A theorem on completely additive family of real valued functions, Bull. Polish Acad. Sci. Math. 34 (1986), no. 9–10, 597–598. Search in Google Scholar

[2] J. E. Baumgartner, Iterated forcing, Surveys in Set Theory, London Math. Soc. Lecture Note Ser. 87, Cambridge University, Cambridge (1983), 1–59. 10.1017/CBO9780511758867.002Search in Google Scholar

[3] F. R. Drake, Set Theory — An Introduction to Large Cardinals, Stud. Logic Found. Math. 76, North-Holland, Amsterdam, 1974. Search in Google Scholar

[4] A. Emeryk, R. Frankiewicz and W. Kulpa, On functions having the Baire property, Bull. Acad. Polon. Sci. Sér. Sci. Math. 27 (1979), no. 6, 489–491. Search in Google Scholar

[5] A. Emeryk, R. Frankiewicz and W. Kulpa, Remarks on Kuratowski’s theorem on meager sets, Bull. Acad. Polon. Sci. Sér. Sci. Math. 27 (1979), no. 6, 493–498. Search in Google Scholar

[6] R. Frankiewicz, A. Gutek, S. Plewik and J. Roczniak, On the theorem on measurable selectors, Bull. Acad. Polon. Sci. Sér. Sci. Math. 30 (1982), no. 1–2, 33–40. Search in Google Scholar

[7] R. Frankiewicz, J. Jureczko and B. Węglorz, On Kuratowski partitions in the Marczewski and Laver structures and Ellentuck topology, Georgian Math. J., to appear. 10.1515/gmj-2019-2038Search in Google Scholar

[8] R. Frankiewicz and K. Kunen, Solution of Kuratowski’s problem on function having the Baire property. I, Fund. Math. 128 (1987), no. 3, 171–180. 10.4064/fm-128-3-171-180Search in Google Scholar

[9] M. Gitik and S. Shelah, Forcings with ideals and simple forcing notions, Israel J. Math. 68 (1989), no. 2, 129–160. 10.1007/BF02772658Search in Google Scholar

[10] T. Jech, Multiple Forcing, Cambridge Tracts in Math. 88, Cambridge University, Cambridge, 1986. Search in Google Scholar

[11] T. Jech, Set Theory, Springer Monogr. Math., Springer, Berlin, 2003. Search in Google Scholar

[12] A. Kamburelis, A new proof of the Gitik–Shelah theorem, Israel J. Math. 72 (1990), no. 3, 373–380. 10.1007/BF02773791Search in Google Scholar

[13] A. Kharazishvili, Nonmeasurable Sets and Functions, North-Holland Math. Stud. 195, Elsevier Science, Amsterdam, 2004. Search in Google Scholar

[14] K. Kuratowski, Quelques problemes concernant les espaces métriques nonséparables, Fund. Math. 25 (1935), no. 1, 534–545. 10.4064/fm-25-1-534-545Search in Google Scholar

[15] R. Sikorski, Boolean Algebras, Ergeb. Math. Grenzgeb. 25, Springer, Berlin, 1960. 10.1007/978-3-662-01507-0Search in Google Scholar

Received: 2018-10-13
Revised: 2019-02-07
Accepted: 2019-02-25
Published Online: 2019-08-14
Published in Print: 2019-12-01

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 24.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/gmj-2019-2040/html
Scroll to top button